A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation
A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature ass...
Ausführliche Beschreibung
Autor*in: |
Feifei Pan [verfasserIn] Lisa Nagaoka [verfasserIn] Steve Wolverton [verfasserIn] Samuel F. Atkinson [verfasserIn] Timothy A. Kohler [verfasserIn] Marty O’Neill [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 12(2021), 2, p 135 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:2, p 135 |
Links: |
---|
DOI / URN: |
10.3390/atmos12020135 |
---|
Katalog-ID: |
DOAJ050010557 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ050010557 | ||
003 | DE-627 | ||
005 | 20240414073434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos12020135 |2 doi | |
035 | |a (DE-627)DOAJ050010557 | ||
035 | |a (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Feifei Pan |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. | ||
650 | 4 | |a stochastic weather generator | |
650 | 4 | |a annual mean air temperature | |
650 | 4 | |a annual precipitation | |
650 | 4 | |a daily mean air temperature | |
650 | 4 | |a daily precipitation | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Lisa Nagaoka |e verfasserin |4 aut | |
700 | 0 | |a Steve Wolverton |e verfasserin |4 aut | |
700 | 0 | |a Samuel F. Atkinson |e verfasserin |4 aut | |
700 | 0 | |a Timothy A. Kohler |e verfasserin |4 aut | |
700 | 0 | |a Marty O’Neill |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 12(2021), 2, p 135 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:2, p 135 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos12020135 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/12/2/135 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 2, p 135 |
author_variant |
f p fp l n ln s w sw s f a sfa t a k tak m o mo |
---|---|
matchkey_str |
article:20734433:2021----::cntandtcatcetegnrtrodiyenitmea |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.3390/atmos12020135 doi (DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c DE-627 ger DE-627 rakwb eng QC851-999 Feifei Pan verfasserin aut A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology Lisa Nagaoka verfasserin aut Steve Wolverton verfasserin aut Samuel F. Atkinson verfasserin aut Timothy A. Kohler verfasserin aut Marty O’Neill verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 2, p 135 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:2, p 135 https://doi.org/10.3390/atmos12020135 kostenfrei https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c kostenfrei https://www.mdpi.com/2073-4433/12/2/135 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2, p 135 |
spelling |
10.3390/atmos12020135 doi (DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c DE-627 ger DE-627 rakwb eng QC851-999 Feifei Pan verfasserin aut A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology Lisa Nagaoka verfasserin aut Steve Wolverton verfasserin aut Samuel F. Atkinson verfasserin aut Timothy A. Kohler verfasserin aut Marty O’Neill verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 2, p 135 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:2, p 135 https://doi.org/10.3390/atmos12020135 kostenfrei https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c kostenfrei https://www.mdpi.com/2073-4433/12/2/135 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2, p 135 |
allfields_unstemmed |
10.3390/atmos12020135 doi (DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c DE-627 ger DE-627 rakwb eng QC851-999 Feifei Pan verfasserin aut A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology Lisa Nagaoka verfasserin aut Steve Wolverton verfasserin aut Samuel F. Atkinson verfasserin aut Timothy A. Kohler verfasserin aut Marty O’Neill verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 2, p 135 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:2, p 135 https://doi.org/10.3390/atmos12020135 kostenfrei https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c kostenfrei https://www.mdpi.com/2073-4433/12/2/135 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2, p 135 |
allfieldsGer |
10.3390/atmos12020135 doi (DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c DE-627 ger DE-627 rakwb eng QC851-999 Feifei Pan verfasserin aut A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology Lisa Nagaoka verfasserin aut Steve Wolverton verfasserin aut Samuel F. Atkinson verfasserin aut Timothy A. Kohler verfasserin aut Marty O’Neill verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 2, p 135 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:2, p 135 https://doi.org/10.3390/atmos12020135 kostenfrei https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c kostenfrei https://www.mdpi.com/2073-4433/12/2/135 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2, p 135 |
allfieldsSound |
10.3390/atmos12020135 doi (DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c DE-627 ger DE-627 rakwb eng QC851-999 Feifei Pan verfasserin aut A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology Lisa Nagaoka verfasserin aut Steve Wolverton verfasserin aut Samuel F. Atkinson verfasserin aut Timothy A. Kohler verfasserin aut Marty O’Neill verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 2, p 135 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:2, p 135 https://doi.org/10.3390/atmos12020135 kostenfrei https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c kostenfrei https://www.mdpi.com/2073-4433/12/2/135 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2, p 135 |
language |
English |
source |
In Atmosphere 12(2021), 2, p 135 volume:12 year:2021 number:2, p 135 |
sourceStr |
In Atmosphere 12(2021), 2, p 135 volume:12 year:2021 number:2, p 135 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Feifei Pan @@aut@@ Lisa Nagaoka @@aut@@ Steve Wolverton @@aut@@ Samuel F. Atkinson @@aut@@ Timothy A. Kohler @@aut@@ Marty O’Neill @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ050010557 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050010557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414073434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12020135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050010557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feifei Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic weather generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual mean air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">daily mean air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">daily precipitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Nagaoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steve Wolverton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samuel F. Atkinson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Timothy A. Kohler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marty O’Neill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 2, p 135</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 135</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12020135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/2/135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 135</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Feifei Pan |
spellingShingle |
Feifei Pan misc QC851-999 misc stochastic weather generator misc annual mean air temperature misc annual precipitation misc daily mean air temperature misc daily precipitation misc Meteorology. Climatology A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
authorStr |
Feifei Pan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation stochastic weather generator annual mean air temperature annual precipitation daily mean air temperature daily precipitation |
topic |
misc QC851-999 misc stochastic weather generator misc annual mean air temperature misc annual precipitation misc daily mean air temperature misc daily precipitation misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc stochastic weather generator misc annual mean air temperature misc annual precipitation misc daily mean air temperature misc daily precipitation misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc stochastic weather generator misc annual mean air temperature misc annual precipitation misc daily mean air temperature misc daily precipitation misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
ctrlnum |
(DE-627)DOAJ050010557 (DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c |
title_full |
A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
author_sort |
Feifei Pan |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Feifei Pan Lisa Nagaoka Steve Wolverton Samuel F. Atkinson Timothy A. Kohler Marty O’Neill |
container_volume |
12 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Feifei Pan |
doi_str_mv |
10.3390/atmos12020135 |
author2-role |
verfasserin |
title_sort |
constrained stochastic weather generator for daily mean air temperature and precipitation |
callnumber |
QC851-999 |
title_auth |
A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
abstract |
A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. |
abstractGer |
A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. |
abstract_unstemmed |
A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 135 |
title_short |
A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation |
url |
https://doi.org/10.3390/atmos12020135 https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c https://www.mdpi.com/2073-4433/12/2/135 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Lisa Nagaoka Steve Wolverton Samuel F. Atkinson Timothy A. Kohler Marty O’Neill |
author2Str |
Lisa Nagaoka Steve Wolverton Samuel F. Atkinson Timothy A. Kohler Marty O’Neill |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos12020135 |
callnumber-a |
QC851-999 |
up_date |
2024-07-04T01:41:54.793Z |
_version_ |
1803610818923724801 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050010557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414073434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12020135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050010557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17d500bacdd541bc9b2e9d6f63e36c6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feifei Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Constrained Stochastic Weather Generator for Daily Mean Air Temperature and Precipitation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A constrained stochastic weather generator (CSWG) for producing daily mean air temperature and precipitation based on annual mean air temperature and precipitation from tree-ring records is developed and tested in this paper. The principle for stochastically generating daily mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily precipitation is based on three additional assumptions: (1) In each month, the total precipitation can be estimated from annual precipitation if there exists a relationship between the annual and monthly precipitations. If that relationship exists, then (2) for each month, the number of dry days and the maximum daily precipitation can be estimated from the total precipitation in that month. Finally, (3) in each month, there exists a probability distribution of daily precipitation amount for each wet day. These assumptions allow the development of a weather generator that constrains statistically relevant daily temperature and precipitation predictions based on a specified annual value, and thus this study presents a unique method that can be used to explore historic (e.g., archeological questions) or future (e.g., climate change) daily weather conditions based upon specified annual values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic weather generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual mean air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">daily mean air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">daily precipitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Nagaoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steve Wolverton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samuel F. Atkinson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Timothy A. Kohler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marty O’Neill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 2, p 135</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 135</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12020135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17d500bacdd541bc9b2e9d6f63e36c6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/2/135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 135</subfield></datafield></record></collection>
|
score |
7.4013624 |