From Auto-encoders to Capsule Networks: A Survey
Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and rel...
Ausführliche Beschreibung
Autor*in: |
El Alaoui-Elfels Omaima [verfasserIn] Gadi Taoufiq [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: E3S Web of Conferences - EDP Sciences, 2013, 229, p 01003(2021) |
---|---|
Übergeordnetes Werk: |
volume:229, p 01003 ; year:2021 |
Links: |
---|
DOI / URN: |
10.1051/e3sconf/202122901003 |
---|
Katalog-ID: |
DOAJ050093185 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ050093185 | ||
003 | DE-627 | ||
005 | 20230308150949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/e3sconf/202122901003 |2 doi | |
035 | |a (DE-627)DOAJ050093185 | ||
035 | |a (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a El Alaoui-Elfels Omaima |e verfasserin |4 aut | |
245 | 1 | 0 | |a From Auto-encoders to Capsule Networks: A Survey |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. | ||
650 | 4 | |a convolutional neural networks | |
650 | 4 | |a auto-encoders | |
650 | 4 | |a capsule networks | |
650 | 4 | |a routing by agreement between capsules | |
650 | 4 | |a em routing | |
650 | 4 | |a stacked capsule network | |
650 | 4 | |a deep learning. | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Gadi Taoufiq |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t E3S Web of Conferences |d EDP Sciences, 2013 |g 229, p 01003(2021) |w (DE-627)778372081 |w (DE-600)2755680-3 |x 22671242 |7 nnns |
773 | 1 | 8 | |g volume:229, p 01003 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1051/e3sconf/202122901003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 |z kostenfrei |
856 | 4 | 0 | |u https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2267-1242 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 229, p 01003 |j 2021 |
author_variant |
e a e o eaeo g t gt |
---|---|
matchkey_str |
article:22671242:2021----::rmuonoesoaslnto |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
GE |
publishDate |
2021 |
allfields |
10.1051/e3sconf/202122901003 doi (DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 DE-627 ger DE-627 rakwb eng fre GE1-350 El Alaoui-Elfels Omaima verfasserin aut From Auto-encoders to Capsule Networks: A Survey 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences Gadi Taoufiq verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 229, p 01003(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:229, p 01003 year:2021 https://doi.org/10.1051/e3sconf/202122901003 kostenfrei https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 229, p 01003 2021 |
spelling |
10.1051/e3sconf/202122901003 doi (DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 DE-627 ger DE-627 rakwb eng fre GE1-350 El Alaoui-Elfels Omaima verfasserin aut From Auto-encoders to Capsule Networks: A Survey 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences Gadi Taoufiq verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 229, p 01003(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:229, p 01003 year:2021 https://doi.org/10.1051/e3sconf/202122901003 kostenfrei https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 229, p 01003 2021 |
allfields_unstemmed |
10.1051/e3sconf/202122901003 doi (DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 DE-627 ger DE-627 rakwb eng fre GE1-350 El Alaoui-Elfels Omaima verfasserin aut From Auto-encoders to Capsule Networks: A Survey 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences Gadi Taoufiq verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 229, p 01003(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:229, p 01003 year:2021 https://doi.org/10.1051/e3sconf/202122901003 kostenfrei https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 229, p 01003 2021 |
allfieldsGer |
10.1051/e3sconf/202122901003 doi (DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 DE-627 ger DE-627 rakwb eng fre GE1-350 El Alaoui-Elfels Omaima verfasserin aut From Auto-encoders to Capsule Networks: A Survey 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences Gadi Taoufiq verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 229, p 01003(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:229, p 01003 year:2021 https://doi.org/10.1051/e3sconf/202122901003 kostenfrei https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 229, p 01003 2021 |
allfieldsSound |
10.1051/e3sconf/202122901003 doi (DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 DE-627 ger DE-627 rakwb eng fre GE1-350 El Alaoui-Elfels Omaima verfasserin aut From Auto-encoders to Capsule Networks: A Survey 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences Gadi Taoufiq verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 229, p 01003(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:229, p 01003 year:2021 https://doi.org/10.1051/e3sconf/202122901003 kostenfrei https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 229, p 01003 2021 |
language |
English French |
source |
In E3S Web of Conferences 229, p 01003(2021) volume:229, p 01003 year:2021 |
sourceStr |
In E3S Web of Conferences 229, p 01003(2021) volume:229, p 01003 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning. Environmental sciences |
isfreeaccess_bool |
true |
container_title |
E3S Web of Conferences |
authorswithroles_txt_mv |
El Alaoui-Elfels Omaima @@aut@@ Gadi Taoufiq @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
778372081 |
id |
DOAJ050093185 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050093185</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308150949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202122901003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050093185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">El Alaoui-Elfels Omaima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From Auto-encoders to Capsule Networks: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auto-encoders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capsule networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing by agreement between capsules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">em routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stacked capsule network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gadi Taoufiq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">229, p 01003(2021)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229, p 01003</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202122901003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229, p 01003</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
El Alaoui-Elfels Omaima |
spellingShingle |
El Alaoui-Elfels Omaima misc GE1-350 misc convolutional neural networks misc auto-encoders misc capsule networks misc routing by agreement between capsules misc em routing misc stacked capsule network misc deep learning. misc Environmental sciences From Auto-encoders to Capsule Networks: A Survey |
authorStr |
El Alaoui-Elfels Omaima |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778372081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
22671242 |
topic_title |
GE1-350 From Auto-encoders to Capsule Networks: A Survey convolutional neural networks auto-encoders capsule networks routing by agreement between capsules em routing stacked capsule network deep learning |
topic |
misc GE1-350 misc convolutional neural networks misc auto-encoders misc capsule networks misc routing by agreement between capsules misc em routing misc stacked capsule network misc deep learning. misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc convolutional neural networks misc auto-encoders misc capsule networks misc routing by agreement between capsules misc em routing misc stacked capsule network misc deep learning. misc Environmental sciences |
topic_browse |
misc GE1-350 misc convolutional neural networks misc auto-encoders misc capsule networks misc routing by agreement between capsules misc em routing misc stacked capsule network misc deep learning. misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
E3S Web of Conferences |
hierarchy_parent_id |
778372081 |
hierarchy_top_title |
E3S Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778372081 (DE-600)2755680-3 |
title |
From Auto-encoders to Capsule Networks: A Survey |
ctrlnum |
(DE-627)DOAJ050093185 (DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51 |
title_full |
From Auto-encoders to Capsule Networks: A Survey |
author_sort |
El Alaoui-Elfels Omaima |
journal |
E3S Web of Conferences |
journalStr |
E3S Web of Conferences |
callnumber-first-code |
G |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
El Alaoui-Elfels Omaima Gadi Taoufiq |
container_volume |
229, p 01003 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
El Alaoui-Elfels Omaima |
doi_str_mv |
10.1051/e3sconf/202122901003 |
author2-role |
verfasserin |
title_sort |
from auto-encoders to capsule networks: a survey |
callnumber |
GE1-350 |
title_auth |
From Auto-encoders to Capsule Networks: A Survey |
abstract |
Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. |
abstractGer |
Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. |
abstract_unstemmed |
Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
From Auto-encoders to Capsule Networks: A Survey |
url |
https://doi.org/10.1051/e3sconf/202122901003 https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51 https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf https://doaj.org/toc/2267-1242 |
remote_bool |
true |
author2 |
Gadi Taoufiq |
author2Str |
Gadi Taoufiq |
ppnlink |
778372081 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/e3sconf/202122901003 |
callnumber-a |
GE1-350 |
up_date |
2024-07-04T02:00:02.984Z |
_version_ |
1803611959970496512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050093185</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308150949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202122901003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050093185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b94263b7d9a4767b978e1a1c8bcee51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">El Alaoui-Elfels Omaima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From Auto-encoders to Capsule Networks: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auto-encoders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capsule networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing by agreement between capsules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">em routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stacked capsule network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gadi Taoufiq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">229, p 01003(2021)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229, p 01003</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202122901003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b94263b7d9a4767b978e1a1c8bcee51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/05/e3sconf_iccsre2021_01003.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229, p 01003</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.401886 |