Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries
Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residenti...
Ausführliche Beschreibung
Autor*in: |
Andrew P. Reiman [verfasserIn] Abhishek Somani [verfasserIn] M. J. E. Alam [verfasserIn] Peng Wang [verfasserIn] Di Wu [verfasserIn] Karanjit Kalsi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 99115-99122 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:99115-99122 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2928568 |
---|
Katalog-ID: |
DOAJ050195662 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ050195662 | ||
003 | DE-627 | ||
005 | 20230308151459.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2928568 |2 doi | |
035 | |a (DE-627)DOAJ050195662 | ||
035 | |a (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Andrew P. Reiman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. | ||
650 | 4 | |a Energy storage | |
650 | 4 | |a optimal scheduling | |
650 | 4 | |a power distribution | |
650 | 4 | |a power generation dispatch | |
650 | 4 | |a power system management | |
650 | 4 | |a power system modeling | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Abhishek Somani |e verfasserin |4 aut | |
700 | 0 | |a M. J. E. Alam |e verfasserin |4 aut | |
700 | 0 | |a Peng Wang |e verfasserin |4 aut | |
700 | 0 | |a Di Wu |e verfasserin |4 aut | |
700 | 0 | |a Karanjit Kalsi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 99115-99122 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:99115-99122 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2928568 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8766975/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 99115-99122 |
author_variant |
a p r apr a s as m j e a mjea p w pw d w dw k k kk |
---|---|
matchkey_str |
article:21693536:2019----::oefcocretoifeesihitiuepoootissnrsdnil |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2928568 doi (DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 DE-627 ger DE-627 rakwb eng TK1-9971 Andrew P. Reiman verfasserin aut Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering Abhishek Somani verfasserin aut M. J. E. Alam verfasserin aut Peng Wang verfasserin aut Di Wu verfasserin aut Karanjit Kalsi verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 99115-99122 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:99115-99122 https://doi.org/10.1109/ACCESS.2019.2928568 kostenfrei https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 kostenfrei https://ieeexplore.ieee.org/document/8766975/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 99115-99122 |
spelling |
10.1109/ACCESS.2019.2928568 doi (DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 DE-627 ger DE-627 rakwb eng TK1-9971 Andrew P. Reiman verfasserin aut Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering Abhishek Somani verfasserin aut M. J. E. Alam verfasserin aut Peng Wang verfasserin aut Di Wu verfasserin aut Karanjit Kalsi verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 99115-99122 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:99115-99122 https://doi.org/10.1109/ACCESS.2019.2928568 kostenfrei https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 kostenfrei https://ieeexplore.ieee.org/document/8766975/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 99115-99122 |
allfields_unstemmed |
10.1109/ACCESS.2019.2928568 doi (DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 DE-627 ger DE-627 rakwb eng TK1-9971 Andrew P. Reiman verfasserin aut Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering Abhishek Somani verfasserin aut M. J. E. Alam verfasserin aut Peng Wang verfasserin aut Di Wu verfasserin aut Karanjit Kalsi verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 99115-99122 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:99115-99122 https://doi.org/10.1109/ACCESS.2019.2928568 kostenfrei https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 kostenfrei https://ieeexplore.ieee.org/document/8766975/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 99115-99122 |
allfieldsGer |
10.1109/ACCESS.2019.2928568 doi (DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 DE-627 ger DE-627 rakwb eng TK1-9971 Andrew P. Reiman verfasserin aut Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering Abhishek Somani verfasserin aut M. J. E. Alam verfasserin aut Peng Wang verfasserin aut Di Wu verfasserin aut Karanjit Kalsi verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 99115-99122 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:99115-99122 https://doi.org/10.1109/ACCESS.2019.2928568 kostenfrei https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 kostenfrei https://ieeexplore.ieee.org/document/8766975/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 99115-99122 |
allfieldsSound |
10.1109/ACCESS.2019.2928568 doi (DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 DE-627 ger DE-627 rakwb eng TK1-9971 Andrew P. Reiman verfasserin aut Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering Abhishek Somani verfasserin aut M. J. E. Alam verfasserin aut Peng Wang verfasserin aut Di Wu verfasserin aut Karanjit Kalsi verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 99115-99122 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:99115-99122 https://doi.org/10.1109/ACCESS.2019.2928568 kostenfrei https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 kostenfrei https://ieeexplore.ieee.org/document/8766975/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 99115-99122 |
language |
English |
source |
In IEEE Access 7(2019), Seite 99115-99122 volume:7 year:2019 pages:99115-99122 |
sourceStr |
In IEEE Access 7(2019), Seite 99115-99122 volume:7 year:2019 pages:99115-99122 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Andrew P. Reiman @@aut@@ Abhishek Somani @@aut@@ M. J. E. Alam @@aut@@ Peng Wang @@aut@@ Di Wu @@aut@@ Karanjit Kalsi @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ050195662 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050195662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308151459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2928568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050195662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrew P. Reiman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation dispatch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abhishek Somani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. E. Alam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karanjit Kalsi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 99115-99122</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:99115-99122</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2928568</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8766975/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">99115-99122</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Andrew P. Reiman |
spellingShingle |
Andrew P. Reiman misc TK1-9971 misc Energy storage misc optimal scheduling misc power distribution misc power generation dispatch misc power system management misc power system modeling misc Electrical engineering. Electronics. Nuclear engineering Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
authorStr |
Andrew P. Reiman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries Energy storage optimal scheduling power distribution power generation dispatch power system management power system modeling |
topic |
misc TK1-9971 misc Energy storage misc optimal scheduling misc power distribution misc power generation dispatch misc power system management misc power system modeling misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Energy storage misc optimal scheduling misc power distribution misc power generation dispatch misc power system management misc power system modeling misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Energy storage misc optimal scheduling misc power distribution misc power generation dispatch misc power system management misc power system modeling misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
ctrlnum |
(DE-627)DOAJ050195662 (DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97 |
title_full |
Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
author_sort |
Andrew P. Reiman |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
99115 |
author_browse |
Andrew P. Reiman Abhishek Somani M. J. E. Alam Peng Wang Di Wu Karanjit Kalsi |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Andrew P. Reiman |
doi_str_mv |
10.1109/ACCESS.2019.2928568 |
author2-role |
verfasserin |
title_sort |
power factor correction in feeders with distributed photovoltaics using residential appliances as virtual batteries |
callnumber |
TK1-9971 |
title_auth |
Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
abstract |
Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. |
abstractGer |
Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. |
abstract_unstemmed |
Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries |
url |
https://doi.org/10.1109/ACCESS.2019.2928568 https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97 https://ieeexplore.ieee.org/document/8766975/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Abhishek Somani M. J. E. Alam Peng Wang Di Wu Karanjit Kalsi |
author2Str |
Abhishek Somani M. J. E. Alam Peng Wang Di Wu Karanjit Kalsi |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2928568 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:32:37.585Z |
_version_ |
1803564936164540416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050195662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308151459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2928568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050195662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0cfd65231bc64e30b13543030f84ca97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrew P. Reiman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Power Factor Correction in Feeders With Distributed Photovoltaics Using Residential Appliances as Virtual Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermostatically controlled residential appliances have built-in thermodynamic storage that, even within a narrow temperature band that does not degrade the comfort level of occupants, can be used to provide a variety of value streams to power system operators and customers. In this paper, residential air conditioners and electric water heaters are used to improve feeder power factor in a distribution system where photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor during the event and return to a neutral condition after the event. Air conditioners, which have a power factor lower than the feeder overall, are optimally dispatched in the inverse pattern. Using a model of a real commercial and residential distribution feeder in the western United States, the optimal dispatch of virtual batteries is shown to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor correction and optimal dispatch techniques are based on a robust virtual battery framework, making them portable to other applications, such as volt-var optimization and transactive energy systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation dispatch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abhishek Somani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. E. Alam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karanjit Kalsi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 99115-99122</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:99115-99122</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2928568</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0cfd65231bc64e30b13543030f84ca97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8766975/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">99115-99122</subfield></datafield></record></collection>
|
score |
7.3997 |