A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem
Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of...
Ausführliche Beschreibung
Autor*in: |
Uroš Klanšek [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Transport - Vilnius Gediminas Technical University, 2018, 30(2015), 2 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2015 ; number:2 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3846/16484142.2014.933361 |
---|
Katalog-ID: |
DOAJ050516809 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ050516809 | ||
003 | DE-627 | ||
005 | 20230308153358.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3846/16484142.2014.933361 |2 doi | |
035 | |a (DE-627)DOAJ050516809 | ||
035 | |a (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1001-1280 | |
100 | 0 | |a Uroš Klanšek |e verfasserin |4 aut | |
245 | 1 | 2 | |a A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 | ||
650 | 4 | |a transportation problems | |
650 | 4 | |a discrete transporting flows | |
650 | 4 | |a nonlinear costs | |
650 | 4 | |a optimization methods | |
650 | 4 | |a mixed-integer linear programming | |
650 | 4 | |a mixed-integer nonlinear programming | |
653 | 0 | |a Transportation engineering | |
773 | 0 | 8 | |i In |t Transport |d Vilnius Gediminas Technical University, 2018 |g 30(2015), 2 |w (DE-627)575174951 |w (DE-600)2446357-7 |x 16483480 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2015 |g number:2 |
856 | 4 | 0 | |u https://doi.org/10.3846/16484142.2014.933361 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a |z kostenfrei |
856 | 4 | 0 | |u https://journals.vgtu.lt/index.php/Transport/article/view/1725 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1648-4142 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1648-3480 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 30 |j 2015 |e 2 |
author_variant |
u k uk |
---|---|
matchkey_str |
article:16483480:2015----::cmaiobtenipnmnpprahsopiasltoonnieric |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
TA |
publishDate |
2015 |
allfields |
10.3846/16484142.2014.933361 doi (DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a DE-627 ger DE-627 rakwb eng TA1001-1280 Uroš Klanšek verfasserin aut A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering In Transport Vilnius Gediminas Technical University, 2018 30(2015), 2 (DE-627)575174951 (DE-600)2446357-7 16483480 nnns volume:30 year:2015 number:2 https://doi.org/10.3846/16484142.2014.933361 kostenfrei https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a kostenfrei https://journals.vgtu.lt/index.php/Transport/article/view/1725 kostenfrei https://doaj.org/toc/1648-4142 Journal toc kostenfrei https://doaj.org/toc/1648-3480 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2015 2 |
spelling |
10.3846/16484142.2014.933361 doi (DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a DE-627 ger DE-627 rakwb eng TA1001-1280 Uroš Klanšek verfasserin aut A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering In Transport Vilnius Gediminas Technical University, 2018 30(2015), 2 (DE-627)575174951 (DE-600)2446357-7 16483480 nnns volume:30 year:2015 number:2 https://doi.org/10.3846/16484142.2014.933361 kostenfrei https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a kostenfrei https://journals.vgtu.lt/index.php/Transport/article/view/1725 kostenfrei https://doaj.org/toc/1648-4142 Journal toc kostenfrei https://doaj.org/toc/1648-3480 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2015 2 |
allfields_unstemmed |
10.3846/16484142.2014.933361 doi (DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a DE-627 ger DE-627 rakwb eng TA1001-1280 Uroš Klanšek verfasserin aut A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering In Transport Vilnius Gediminas Technical University, 2018 30(2015), 2 (DE-627)575174951 (DE-600)2446357-7 16483480 nnns volume:30 year:2015 number:2 https://doi.org/10.3846/16484142.2014.933361 kostenfrei https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a kostenfrei https://journals.vgtu.lt/index.php/Transport/article/view/1725 kostenfrei https://doaj.org/toc/1648-4142 Journal toc kostenfrei https://doaj.org/toc/1648-3480 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2015 2 |
allfieldsGer |
10.3846/16484142.2014.933361 doi (DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a DE-627 ger DE-627 rakwb eng TA1001-1280 Uroš Klanšek verfasserin aut A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering In Transport Vilnius Gediminas Technical University, 2018 30(2015), 2 (DE-627)575174951 (DE-600)2446357-7 16483480 nnns volume:30 year:2015 number:2 https://doi.org/10.3846/16484142.2014.933361 kostenfrei https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a kostenfrei https://journals.vgtu.lt/index.php/Transport/article/view/1725 kostenfrei https://doaj.org/toc/1648-4142 Journal toc kostenfrei https://doaj.org/toc/1648-3480 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2015 2 |
allfieldsSound |
10.3846/16484142.2014.933361 doi (DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a DE-627 ger DE-627 rakwb eng TA1001-1280 Uroš Klanšek verfasserin aut A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering In Transport Vilnius Gediminas Technical University, 2018 30(2015), 2 (DE-627)575174951 (DE-600)2446357-7 16483480 nnns volume:30 year:2015 number:2 https://doi.org/10.3846/16484142.2014.933361 kostenfrei https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a kostenfrei https://journals.vgtu.lt/index.php/Transport/article/view/1725 kostenfrei https://doaj.org/toc/1648-4142 Journal toc kostenfrei https://doaj.org/toc/1648-3480 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 30 2015 2 |
language |
English |
source |
In Transport 30(2015), 2 volume:30 year:2015 number:2 |
sourceStr |
In Transport 30(2015), 2 volume:30 year:2015 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming Transportation engineering |
isfreeaccess_bool |
true |
container_title |
Transport |
authorswithroles_txt_mv |
Uroš Klanšek @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
575174951 |
id |
DOAJ050516809 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050516809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308153358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3846/16484142.2014.933361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050516809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Uroš Klanšek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transportation problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete transporting flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear costs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed-integer linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed-integer nonlinear programming</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport</subfield><subfield code="d">Vilnius Gediminas Technical University, 2018</subfield><subfield code="g">30(2015), 2</subfield><subfield code="w">(DE-627)575174951</subfield><subfield code="w">(DE-600)2446357-7</subfield><subfield code="x">16483480</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3846/16484142.2014.933361</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.vgtu.lt/index.php/Transport/article/view/1725</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1648-4142</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1648-3480</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Uroš Klanšek |
spellingShingle |
Uroš Klanšek misc TA1001-1280 misc transportation problems misc discrete transporting flows misc nonlinear costs misc optimization methods misc mixed-integer linear programming misc mixed-integer nonlinear programming misc Transportation engineering A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
authorStr |
Uroš Klanšek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)575174951 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1001-1280 |
illustrated |
Not Illustrated |
issn |
16483480 |
topic_title |
TA1001-1280 A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem transportation problems discrete transporting flows nonlinear costs optimization methods mixed-integer linear programming mixed-integer nonlinear programming |
topic |
misc TA1001-1280 misc transportation problems misc discrete transporting flows misc nonlinear costs misc optimization methods misc mixed-integer linear programming misc mixed-integer nonlinear programming misc Transportation engineering |
topic_unstemmed |
misc TA1001-1280 misc transportation problems misc discrete transporting flows misc nonlinear costs misc optimization methods misc mixed-integer linear programming misc mixed-integer nonlinear programming misc Transportation engineering |
topic_browse |
misc TA1001-1280 misc transportation problems misc discrete transporting flows misc nonlinear costs misc optimization methods misc mixed-integer linear programming misc mixed-integer nonlinear programming misc Transportation engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transport |
hierarchy_parent_id |
575174951 |
hierarchy_top_title |
Transport |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)575174951 (DE-600)2446357-7 |
title |
A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
ctrlnum |
(DE-627)DOAJ050516809 (DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a |
title_full |
A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
author_sort |
Uroš Klanšek |
journal |
Transport |
journalStr |
Transport |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Uroš Klanšek |
container_volume |
30 |
class |
TA1001-1280 |
format_se |
Elektronische Aufsätze |
author-letter |
Uroš Klanšek |
doi_str_mv |
10.3846/16484142.2014.933361 |
title_sort |
comparison between milp and minlp approaches to optimal solution of nonlinear discrete transportation problem |
callnumber |
TA1001-1280 |
title_auth |
A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
abstract |
Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 |
abstractGer |
Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 |
abstract_unstemmed |
Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem |
url |
https://doi.org/10.3846/16484142.2014.933361 https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a https://journals.vgtu.lt/index.php/Transport/article/view/1725 https://doaj.org/toc/1648-4142 https://doaj.org/toc/1648-3480 |
remote_bool |
true |
ppnlink |
575174951 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3846/16484142.2014.933361 |
callnumber-a |
TA1001-1280 |
up_date |
2024-07-03T15:16:35.605Z |
_version_ |
1803571477198405632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050516809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308153358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3846/16484142.2014.933361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050516809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfade7fc41be24357ae7ceb9a646cba7a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Uroš Klanšek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparison between MILP and MINLP approaches to optimal solution of Nonlinear Discrete Transportation Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Finding an exact optimal solution of the Nonlinear Discrete Transportation Problem (NDTP) represents a challenging task in transportation science. Development of an adequate model formulation and selection of an appropriate optimization method are thus significant for attaining valuable solution of the NDTP. When nonlinearities appear within the criterion of optimization, the NDTP can be formulated directly as a Mixed-Integer Nonlinear Programming (MINLP) task or it can be linearized and converted into a Mixed-Integer Linear Programming (MILP) problem. This paper presents a comparison between MILP and MINLP approaches to exact optimal solution of the NDTP. The comparison is based on obtained results of experiments executed on a set of reference test problems. The paper discusses advantages and limitations of both optimization approaches. First published online: 10 Jul 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transportation problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete transporting flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear costs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed-integer linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed-integer nonlinear programming</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport</subfield><subfield code="d">Vilnius Gediminas Technical University, 2018</subfield><subfield code="g">30(2015), 2</subfield><subfield code="w">(DE-627)575174951</subfield><subfield code="w">(DE-600)2446357-7</subfield><subfield code="x">16483480</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3846/16484142.2014.933361</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fade7fc41be24357ae7ceb9a646cba7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.vgtu.lt/index.php/Transport/article/view/1725</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1648-4142</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1648-3480</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.4011936 |