A defect in dystrophin causes a novel porcine stress syndrome
<p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however,...
Ausführliche Beschreibung
Autor*in: |
Nonneman Dan J [verfasserIn] Brown-Brandl Tami [verfasserIn] Jones Shuna A [verfasserIn] Wiedmann Ralph T [verfasserIn] Rohrer Gary A [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Übergeordnetes Werk: |
In: BMC Genomics - BMC, 2003, 13(2012), 1, p 233 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2012 ; number:1, p 233 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-13-233 |
---|
Katalog-ID: |
DOAJ050931547 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ050931547 | ||
003 | DE-627 | ||
005 | 20230308155458.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-13-233 |2 doi | |
035 | |a (DE-627)DOAJ050931547 | ||
035 | |a (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH426-470 | |
100 | 0 | |a Nonneman Dan J |e verfasserin |4 aut | |
245 | 1 | 2 | |a A defect in dystrophin causes a novel porcine stress syndrome |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< | ||
653 | 0 | |a Biotechnology | |
653 | 0 | |a Genetics | |
700 | 0 | |a Brown-Brandl Tami |e verfasserin |4 aut | |
700 | 0 | |a Jones Shuna A |e verfasserin |4 aut | |
700 | 0 | |a Wiedmann Ralph T |e verfasserin |4 aut | |
700 | 0 | |a Rohrer Gary A |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Genomics |d BMC, 2003 |g 13(2012), 1, p 233 |w (DE-627)326644954 |w (DE-600)2041499-7 |x 14712164 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2012 |g number:1, p 233 |
856 | 4 | 0 | |u https://doi.org/10.1186/1471-2164-13-233 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 |z kostenfrei |
856 | 4 | 0 | |u http://www.biomedcentral.com/1471-2164/13/233 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2164 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2012 |e 1, p 233 |
author_variant |
n d j ndj b b t bbt j s a jsa w r t wrt r g a rga |
---|---|
matchkey_str |
article:14712164:2012----::dfcidsrpicueaoeprie |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
TP |
publishDate |
2012 |
allfields |
10.1186/1471-2164-13-233 doi (DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Nonneman Dan J verfasserin aut A defect in dystrophin causes a novel porcine stress syndrome 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< Biotechnology Genetics Brown-Brandl Tami verfasserin aut Jones Shuna A verfasserin aut Wiedmann Ralph T verfasserin aut Rohrer Gary A verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 233 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 233 https://doi.org/10.1186/1471-2164-13-233 kostenfrei https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 kostenfrei http://www.biomedcentral.com/1471-2164/13/233 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 233 |
spelling |
10.1186/1471-2164-13-233 doi (DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Nonneman Dan J verfasserin aut A defect in dystrophin causes a novel porcine stress syndrome 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< Biotechnology Genetics Brown-Brandl Tami verfasserin aut Jones Shuna A verfasserin aut Wiedmann Ralph T verfasserin aut Rohrer Gary A verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 233 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 233 https://doi.org/10.1186/1471-2164-13-233 kostenfrei https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 kostenfrei http://www.biomedcentral.com/1471-2164/13/233 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 233 |
allfields_unstemmed |
10.1186/1471-2164-13-233 doi (DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Nonneman Dan J verfasserin aut A defect in dystrophin causes a novel porcine stress syndrome 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< Biotechnology Genetics Brown-Brandl Tami verfasserin aut Jones Shuna A verfasserin aut Wiedmann Ralph T verfasserin aut Rohrer Gary A verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 233 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 233 https://doi.org/10.1186/1471-2164-13-233 kostenfrei https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 kostenfrei http://www.biomedcentral.com/1471-2164/13/233 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 233 |
allfieldsGer |
10.1186/1471-2164-13-233 doi (DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Nonneman Dan J verfasserin aut A defect in dystrophin causes a novel porcine stress syndrome 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< Biotechnology Genetics Brown-Brandl Tami verfasserin aut Jones Shuna A verfasserin aut Wiedmann Ralph T verfasserin aut Rohrer Gary A verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 233 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 233 https://doi.org/10.1186/1471-2164-13-233 kostenfrei https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 kostenfrei http://www.biomedcentral.com/1471-2164/13/233 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 233 |
allfieldsSound |
10.1186/1471-2164-13-233 doi (DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Nonneman Dan J verfasserin aut A defect in dystrophin causes a novel porcine stress syndrome 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< Biotechnology Genetics Brown-Brandl Tami verfasserin aut Jones Shuna A verfasserin aut Wiedmann Ralph T verfasserin aut Rohrer Gary A verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 233 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 233 https://doi.org/10.1186/1471-2164-13-233 kostenfrei https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 kostenfrei http://www.biomedcentral.com/1471-2164/13/233 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 233 |
language |
English |
source |
In BMC Genomics 13(2012), 1, p 233 volume:13 year:2012 number:1, p 233 |
sourceStr |
In BMC Genomics 13(2012), 1, p 233 volume:13 year:2012 number:1, p 233 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biotechnology Genetics |
isfreeaccess_bool |
true |
container_title |
BMC Genomics |
authorswithroles_txt_mv |
Nonneman Dan J @@aut@@ Brown-Brandl Tami @@aut@@ Jones Shuna A @@aut@@ Wiedmann Ralph T @@aut@@ Rohrer Gary A @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
DOAJ050931547 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050931547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308155458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-13-233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050931547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nonneman Dan J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A defect in dystrophin causes a novel porcine stress syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brown-Brandl Tami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jones Shuna A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wiedmann Ralph T</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rohrer Gary A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">13(2012), 1, p 233</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1, p 233</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2164-13-233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2164/13/233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2012</subfield><subfield code="e">1, p 233</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nonneman Dan J |
spellingShingle |
Nonneman Dan J misc TP248.13-248.65 misc QH426-470 misc Biotechnology misc Genetics A defect in dystrophin causes a novel porcine stress syndrome |
authorStr |
Nonneman Dan J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
14712164 |
topic_title |
TP248.13-248.65 QH426-470 A defect in dystrophin causes a novel porcine stress syndrome |
topic |
misc TP248.13-248.65 misc QH426-470 misc Biotechnology misc Genetics |
topic_unstemmed |
misc TP248.13-248.65 misc QH426-470 misc Biotechnology misc Genetics |
topic_browse |
misc TP248.13-248.65 misc QH426-470 misc Biotechnology misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC Genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
A defect in dystrophin causes a novel porcine stress syndrome |
ctrlnum |
(DE-627)DOAJ050931547 (DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0 |
title_full |
A defect in dystrophin causes a novel porcine stress syndrome |
author_sort |
Nonneman Dan J |
journal |
BMC Genomics |
journalStr |
BMC Genomics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Nonneman Dan J Brown-Brandl Tami Jones Shuna A Wiedmann Ralph T Rohrer Gary A |
container_volume |
13 |
class |
TP248.13-248.65 QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Nonneman Dan J |
doi_str_mv |
10.1186/1471-2164-13-233 |
author2-role |
verfasserin |
title_sort |
defect in dystrophin causes a novel porcine stress syndrome |
callnumber |
TP248.13-248.65 |
title_auth |
A defect in dystrophin causes a novel porcine stress syndrome |
abstract |
<p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< |
abstractGer |
<p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< |
abstract_unstemmed |
<p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 233 |
title_short |
A defect in dystrophin causes a novel porcine stress syndrome |
url |
https://doi.org/10.1186/1471-2164-13-233 https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0 http://www.biomedcentral.com/1471-2164/13/233 https://doaj.org/toc/1471-2164 |
remote_bool |
true |
author2 |
Brown-Brandl Tami Jones Shuna A Wiedmann Ralph T Rohrer Gary A |
author2Str |
Brown-Brandl Tami Jones Shuna A Wiedmann Ralph T Rohrer Gary A |
ppnlink |
326644954 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-13-233 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T17:31:56.861Z |
_version_ |
1803579992951488512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ050931547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308155458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-13-233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ050931547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb3b4344d03b74973965221e3c3fe0bc0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nonneman Dan J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A defect in dystrophin causes a novel porcine stress syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.</p< <p<Results</p< <p<We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (<it<DMD</it<), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of <it<DMD</it< was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.</p< <p<Conclusions</p< <p<A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within <it<DMD</it< that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brown-Brandl Tami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jones Shuna A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wiedmann Ralph T</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rohrer Gary A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">13(2012), 1, p 233</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1, p 233</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2164-13-233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b3b4344d03b74973965221e3c3fe0bc0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2164/13/233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2012</subfield><subfield code="e">1, p 233</subfield></datafield></record></collection>
|
score |
7.4017506 |