Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach
Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the...
Ausführliche Beschreibung
Autor*in: |
Ivor Langley, MSc [verfasserIn] Dr. Hsien-Ho Lin, MD [verfasserIn] Saidi Egwaga, MD [verfasserIn] Basra Doulla, MSc [verfasserIn] Chu-Chang Ku, BS [verfasserIn] Prof. Megan Murray, MD [verfasserIn] Ted Cohen, MD [verfasserIn] Prof. S Bertel Squire, MD [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Übergeordnetes Werk: |
In: The Lancet Global Health - Elsevier, 2013, 2(2014), 10, Seite e581-e591 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2014 ; number:10 ; pages:e581-e591 |
Links: |
---|
DOI / URN: |
10.1016/S2214-109X(14)70291-8 |
---|
Katalog-ID: |
DOAJ051077299 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051077299 | ||
003 | DE-627 | ||
005 | 20230308155953.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S2214-109X(14)70291-8 |2 doi | |
035 | |a (DE-627)DOAJ051077299 | ||
035 | |a (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RA1-1270 | |
100 | 0 | |a Ivor Langley, MSc |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. | ||
653 | 0 | |a Public aspects of medicine | |
700 | 0 | |a Dr. Hsien-Ho Lin, MD |e verfasserin |4 aut | |
700 | 0 | |a Saidi Egwaga, MD |e verfasserin |4 aut | |
700 | 0 | |a Basra Doulla, MSc |e verfasserin |4 aut | |
700 | 0 | |a Chu-Chang Ku, BS |e verfasserin |4 aut | |
700 | 0 | |a Prof. Megan Murray, MD |e verfasserin |4 aut | |
700 | 0 | |a Ted Cohen, MD |e verfasserin |4 aut | |
700 | 0 | |a Prof. S Bertel Squire, MD |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Lancet Global Health |d Elsevier, 2013 |g 2(2014), 10, Seite e581-e591 |w (DE-627)751863181 |w (DE-600)2723488-5 |x 2214109X |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2014 |g number:10 |g pages:e581-e591 |
856 | 4 | 0 | |u https://doi.org/10.1016/S2214-109X(14)70291-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2214109X14702918 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2214-109X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2014 |e 10 |h e581-e591 |
author_variant |
l m i lm lmi h h l m d hhlm hhlmd e m s em ems d m b dm dmb k b c c kbc kbcc m m m p mmm mmmp c m t cm cmt s b s m p sbsm sbsmp |
---|---|
matchkey_str |
article:2214109X:2014----::sesetfhptetelhytmnppltoefcsfprmbiadlentvdansisotbruoii |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
RA |
publishDate |
2014 |
allfields |
10.1016/S2214-109X(14)70291-8 doi (DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a DE-627 ger DE-627 rakwb eng RA1-1270 Ivor Langley, MSc verfasserin aut Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. Public aspects of medicine Dr. Hsien-Ho Lin, MD verfasserin aut Saidi Egwaga, MD verfasserin aut Basra Doulla, MSc verfasserin aut Chu-Chang Ku, BS verfasserin aut Prof. Megan Murray, MD verfasserin aut Ted Cohen, MD verfasserin aut Prof. S Bertel Squire, MD verfasserin aut In The Lancet Global Health Elsevier, 2013 2(2014), 10, Seite e581-e591 (DE-627)751863181 (DE-600)2723488-5 2214109X nnns volume:2 year:2014 number:10 pages:e581-e591 https://doi.org/10.1016/S2214-109X(14)70291-8 kostenfrei https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a kostenfrei http://www.sciencedirect.com/science/article/pii/S2214109X14702918 kostenfrei https://doaj.org/toc/2214-109X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 2 2014 10 e581-e591 |
spelling |
10.1016/S2214-109X(14)70291-8 doi (DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a DE-627 ger DE-627 rakwb eng RA1-1270 Ivor Langley, MSc verfasserin aut Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. Public aspects of medicine Dr. Hsien-Ho Lin, MD verfasserin aut Saidi Egwaga, MD verfasserin aut Basra Doulla, MSc verfasserin aut Chu-Chang Ku, BS verfasserin aut Prof. Megan Murray, MD verfasserin aut Ted Cohen, MD verfasserin aut Prof. S Bertel Squire, MD verfasserin aut In The Lancet Global Health Elsevier, 2013 2(2014), 10, Seite e581-e591 (DE-627)751863181 (DE-600)2723488-5 2214109X nnns volume:2 year:2014 number:10 pages:e581-e591 https://doi.org/10.1016/S2214-109X(14)70291-8 kostenfrei https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a kostenfrei http://www.sciencedirect.com/science/article/pii/S2214109X14702918 kostenfrei https://doaj.org/toc/2214-109X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 2 2014 10 e581-e591 |
allfields_unstemmed |
10.1016/S2214-109X(14)70291-8 doi (DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a DE-627 ger DE-627 rakwb eng RA1-1270 Ivor Langley, MSc verfasserin aut Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. Public aspects of medicine Dr. Hsien-Ho Lin, MD verfasserin aut Saidi Egwaga, MD verfasserin aut Basra Doulla, MSc verfasserin aut Chu-Chang Ku, BS verfasserin aut Prof. Megan Murray, MD verfasserin aut Ted Cohen, MD verfasserin aut Prof. S Bertel Squire, MD verfasserin aut In The Lancet Global Health Elsevier, 2013 2(2014), 10, Seite e581-e591 (DE-627)751863181 (DE-600)2723488-5 2214109X nnns volume:2 year:2014 number:10 pages:e581-e591 https://doi.org/10.1016/S2214-109X(14)70291-8 kostenfrei https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a kostenfrei http://www.sciencedirect.com/science/article/pii/S2214109X14702918 kostenfrei https://doaj.org/toc/2214-109X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 2 2014 10 e581-e591 |
allfieldsGer |
10.1016/S2214-109X(14)70291-8 doi (DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a DE-627 ger DE-627 rakwb eng RA1-1270 Ivor Langley, MSc verfasserin aut Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. Public aspects of medicine Dr. Hsien-Ho Lin, MD verfasserin aut Saidi Egwaga, MD verfasserin aut Basra Doulla, MSc verfasserin aut Chu-Chang Ku, BS verfasserin aut Prof. Megan Murray, MD verfasserin aut Ted Cohen, MD verfasserin aut Prof. S Bertel Squire, MD verfasserin aut In The Lancet Global Health Elsevier, 2013 2(2014), 10, Seite e581-e591 (DE-627)751863181 (DE-600)2723488-5 2214109X nnns volume:2 year:2014 number:10 pages:e581-e591 https://doi.org/10.1016/S2214-109X(14)70291-8 kostenfrei https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a kostenfrei http://www.sciencedirect.com/science/article/pii/S2214109X14702918 kostenfrei https://doaj.org/toc/2214-109X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 2 2014 10 e581-e591 |
allfieldsSound |
10.1016/S2214-109X(14)70291-8 doi (DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a DE-627 ger DE-627 rakwb eng RA1-1270 Ivor Langley, MSc verfasserin aut Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. Public aspects of medicine Dr. Hsien-Ho Lin, MD verfasserin aut Saidi Egwaga, MD verfasserin aut Basra Doulla, MSc verfasserin aut Chu-Chang Ku, BS verfasserin aut Prof. Megan Murray, MD verfasserin aut Ted Cohen, MD verfasserin aut Prof. S Bertel Squire, MD verfasserin aut In The Lancet Global Health Elsevier, 2013 2(2014), 10, Seite e581-e591 (DE-627)751863181 (DE-600)2723488-5 2214109X nnns volume:2 year:2014 number:10 pages:e581-e591 https://doi.org/10.1016/S2214-109X(14)70291-8 kostenfrei https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a kostenfrei http://www.sciencedirect.com/science/article/pii/S2214109X14702918 kostenfrei https://doaj.org/toc/2214-109X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 2 2014 10 e581-e591 |
language |
English |
source |
In The Lancet Global Health 2(2014), 10, Seite e581-e591 volume:2 year:2014 number:10 pages:e581-e591 |
sourceStr |
In The Lancet Global Health 2(2014), 10, Seite e581-e591 volume:2 year:2014 number:10 pages:e581-e591 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Public aspects of medicine |
isfreeaccess_bool |
true |
container_title |
The Lancet Global Health |
authorswithroles_txt_mv |
Ivor Langley, MSc @@aut@@ Dr. Hsien-Ho Lin, MD @@aut@@ Saidi Egwaga, MD @@aut@@ Basra Doulla, MSc @@aut@@ Chu-Chang Ku, BS @@aut@@ Prof. Megan Murray, MD @@aut@@ Ted Cohen, MD @@aut@@ Prof. S Bertel Squire, MD @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
751863181 |
id |
DOAJ051077299 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051077299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308155953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S2214-109X(14)70291-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051077299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ivor Langley, MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dr. Hsien-Ho Lin, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saidi Egwaga, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Basra Doulla, MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chu-Chang Ku, BS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prof. Megan Murray, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ted Cohen, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prof. S Bertel Squire, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Lancet Global Health</subfield><subfield code="d">Elsevier, 2013</subfield><subfield code="g">2(2014), 10, Seite e581-e591</subfield><subfield code="w">(DE-627)751863181</subfield><subfield code="w">(DE-600)2723488-5</subfield><subfield code="x">2214109X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:e581-e591</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S2214-109X(14)70291-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214109X14702918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-109X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2014</subfield><subfield code="e">10</subfield><subfield code="h">e581-e591</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Ivor Langley, MSc |
spellingShingle |
Ivor Langley, MSc misc RA1-1270 misc Public aspects of medicine Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
authorStr |
Ivor Langley, MSc |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)751863181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RA1-1270 |
illustrated |
Not Illustrated |
issn |
2214109X |
topic_title |
RA1-1270 Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
topic |
misc RA1-1270 misc Public aspects of medicine |
topic_unstemmed |
misc RA1-1270 misc Public aspects of medicine |
topic_browse |
misc RA1-1270 misc Public aspects of medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Lancet Global Health |
hierarchy_parent_id |
751863181 |
hierarchy_top_title |
The Lancet Global Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)751863181 (DE-600)2723488-5 |
title |
Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
ctrlnum |
(DE-627)DOAJ051077299 (DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a |
title_full |
Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
author_sort |
Ivor Langley, MSc |
journal |
The Lancet Global Health |
journalStr |
The Lancet Global Health |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Ivor Langley, MSc Dr. Hsien-Ho Lin, MD Saidi Egwaga, MD Basra Doulla, MSc Chu-Chang Ku, BS Prof. Megan Murray, MD Ted Cohen, MD Prof. S Bertel Squire, MD |
container_volume |
2 |
class |
RA1-1270 |
format_se |
Elektronische Aufsätze |
author-letter |
Ivor Langley, MSc |
doi_str_mv |
10.1016/S2214-109X(14)70291-8 |
author2-role |
verfasserin |
title_sort |
assessment of the patient, health system, and population effects of xpert mtb/rif and alternative diagnostics for tuberculosis in tanzania: an integrated modelling approach |
callnumber |
RA1-1270 |
title_auth |
Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
abstract |
Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. |
abstractGer |
Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. |
abstract_unstemmed |
Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach |
url |
https://doi.org/10.1016/S2214-109X(14)70291-8 https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a http://www.sciencedirect.com/science/article/pii/S2214109X14702918 https://doaj.org/toc/2214-109X |
remote_bool |
true |
author2 |
Dr. Hsien-Ho Lin, MD Saidi Egwaga, MD Basra Doulla, MSc Chu-Chang Ku, BS Prof. Megan Murray, MD Ted Cohen, MD Prof. S Bertel Squire, MD |
author2Str |
Dr. Hsien-Ho Lin, MD Saidi Egwaga, MD Basra Doulla, MSc Chu-Chang Ku, BS Prof. Megan Murray, MD Ted Cohen, MD Prof. S Bertel Squire, MD |
ppnlink |
751863181 |
callnumber-subject |
RA - Public Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/S2214-109X(14)70291-8 |
callnumber-a |
RA1-1270 |
up_date |
2024-07-03T18:18:21.084Z |
_version_ |
1803582912434536448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051077299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308155953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S2214-109X(14)70291-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051077299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ71d4597d4c424ae49c1d03a5a500643a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ivor Langley, MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place them in the diagnostic algorithm. Methods: We used an integrated model to assess the effects of different algorithms of Xpert MTB/RIF and light-emitting diode (LED) fluorescence microscopy in Tanzania. To understand the effects of new diagnostics from the patient, health system, and population perspective, the model incorporated and linked a detailed operational component and a transmission component. The model was designed to represent the operational and epidemiological context of Tanzania and was used to compare the effects and cost-effectiveness of different diagnostic options. Findings: Among the diagnostic options considered, we identified three strategies as cost effective in Tanzania. Full scale-up of Xpert would have the greatest population-level effect with the highest incremental cost: 346 000 disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The incremental cost-effectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fluorescence microscopy is the next most effective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fluorescence microscopy with an ICER of $29 (6–59). Compared with same-day LED fluorescence microscopy and Xpert full rollout, targeted use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the context of Tanzania. Interpretation: For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-effective option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This approach could be adapted and replicated in other developing countries to inform rational health policy formulation. Funding: United States Agency for International Development.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dr. Hsien-Ho Lin, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saidi Egwaga, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Basra Doulla, MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chu-Chang Ku, BS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prof. Megan Murray, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ted Cohen, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prof. S Bertel Squire, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Lancet Global Health</subfield><subfield code="d">Elsevier, 2013</subfield><subfield code="g">2(2014), 10, Seite e581-e591</subfield><subfield code="w">(DE-627)751863181</subfield><subfield code="w">(DE-600)2723488-5</subfield><subfield code="x">2214109X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:e581-e591</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S2214-109X(14)70291-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/71d4597d4c424ae49c1d03a5a500643a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214109X14702918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-109X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2014</subfield><subfield code="e">10</subfield><subfield code="h">e581-e591</subfield></datafield></record></collection>
|
score |
7.4022093 |