Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages
ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence facto...
Ausführliche Beschreibung
Autor*in: |
Naraporn Somboonna [verfasserIn] Raymond Wan [verfasserIn] David M. Ojcius [verfasserIn] Matthew A. Pettengill [verfasserIn] Sandeep J. Joseph [verfasserIn] Alexander Chang [verfasserIn] Ray Hsu [verfasserIn] Timothy D. Read [verfasserIn] Deborah Dean [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Übergeordnetes Werk: |
In: mBio - American Society for Microbiology, 2010, 2(2011), 3 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2011 ; number:3 |
Links: |
---|
DOI / URN: |
10.1128/mBio.00045-11 |
---|
Katalog-ID: |
DOAJ051099861 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051099861 | ||
003 | DE-627 | ||
005 | 20230503001841.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1128/mBio.00045-11 |2 doi | |
035 | |a (DE-627)DOAJ051099861 | ||
035 | |a (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Naraporn Somboonna |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. | ||
653 | 0 | |a Microbiology | |
700 | 0 | |a Raymond Wan |e verfasserin |4 aut | |
700 | 0 | |a David M. Ojcius |e verfasserin |4 aut | |
700 | 0 | |a Matthew A. Pettengill |e verfasserin |4 aut | |
700 | 0 | |a Sandeep J. Joseph |e verfasserin |4 aut | |
700 | 0 | |a Alexander Chang |e verfasserin |4 aut | |
700 | 0 | |a Ray Hsu |e verfasserin |4 aut | |
700 | 0 | |a Timothy D. Read |e verfasserin |4 aut | |
700 | 0 | |a Deborah Dean |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t mBio |d American Society for Microbiology, 2010 |g 2(2011), 3 |w (DE-627)627613543 |w (DE-600)2557172-2 |x 21507511 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2011 |g number:3 |
856 | 4 | 0 | |u https://doi.org/10.1128/mBio.00045-11 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/514aa54432b64bba83cc363007c38c7c |z kostenfrei |
856 | 4 | 0 | |u https://journals.asm.org/doi/10.1128/mBio.00045-11 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2150-7511 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2011 |e 3 |
author_variant |
n s ns r w rw d m o dmo m a p map s j j sjj a c ac r h rh t d r tdr d d dd |
---|---|
matchkey_str |
article:21507511:2011----::yevrlnnmdotncnetyeeuseishayitahmtsaecnetlncltansrcmiatewel |
hierarchy_sort_str |
2011 |
callnumber-subject-code |
QR |
publishDate |
2011 |
allfields |
10.1128/mBio.00045-11 doi (DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c DE-627 ger DE-627 rakwb eng QR1-502 Naraporn Somboonna verfasserin aut Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. Microbiology Raymond Wan verfasserin aut David M. Ojcius verfasserin aut Matthew A. Pettengill verfasserin aut Sandeep J. Joseph verfasserin aut Alexander Chang verfasserin aut Ray Hsu verfasserin aut Timothy D. Read verfasserin aut Deborah Dean verfasserin aut In mBio American Society for Microbiology, 2010 2(2011), 3 (DE-627)627613543 (DE-600)2557172-2 21507511 nnns volume:2 year:2011 number:3 https://doi.org/10.1128/mBio.00045-11 kostenfrei https://doaj.org/article/514aa54432b64bba83cc363007c38c7c kostenfrei https://journals.asm.org/doi/10.1128/mBio.00045-11 kostenfrei https://doaj.org/toc/2150-7511 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2011 3 |
spelling |
10.1128/mBio.00045-11 doi (DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c DE-627 ger DE-627 rakwb eng QR1-502 Naraporn Somboonna verfasserin aut Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. Microbiology Raymond Wan verfasserin aut David M. Ojcius verfasserin aut Matthew A. Pettengill verfasserin aut Sandeep J. Joseph verfasserin aut Alexander Chang verfasserin aut Ray Hsu verfasserin aut Timothy D. Read verfasserin aut Deborah Dean verfasserin aut In mBio American Society for Microbiology, 2010 2(2011), 3 (DE-627)627613543 (DE-600)2557172-2 21507511 nnns volume:2 year:2011 number:3 https://doi.org/10.1128/mBio.00045-11 kostenfrei https://doaj.org/article/514aa54432b64bba83cc363007c38c7c kostenfrei https://journals.asm.org/doi/10.1128/mBio.00045-11 kostenfrei https://doaj.org/toc/2150-7511 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2011 3 |
allfields_unstemmed |
10.1128/mBio.00045-11 doi (DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c DE-627 ger DE-627 rakwb eng QR1-502 Naraporn Somboonna verfasserin aut Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. Microbiology Raymond Wan verfasserin aut David M. Ojcius verfasserin aut Matthew A. Pettengill verfasserin aut Sandeep J. Joseph verfasserin aut Alexander Chang verfasserin aut Ray Hsu verfasserin aut Timothy D. Read verfasserin aut Deborah Dean verfasserin aut In mBio American Society for Microbiology, 2010 2(2011), 3 (DE-627)627613543 (DE-600)2557172-2 21507511 nnns volume:2 year:2011 number:3 https://doi.org/10.1128/mBio.00045-11 kostenfrei https://doaj.org/article/514aa54432b64bba83cc363007c38c7c kostenfrei https://journals.asm.org/doi/10.1128/mBio.00045-11 kostenfrei https://doaj.org/toc/2150-7511 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2011 3 |
allfieldsGer |
10.1128/mBio.00045-11 doi (DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c DE-627 ger DE-627 rakwb eng QR1-502 Naraporn Somboonna verfasserin aut Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. Microbiology Raymond Wan verfasserin aut David M. Ojcius verfasserin aut Matthew A. Pettengill verfasserin aut Sandeep J. Joseph verfasserin aut Alexander Chang verfasserin aut Ray Hsu verfasserin aut Timothy D. Read verfasserin aut Deborah Dean verfasserin aut In mBio American Society for Microbiology, 2010 2(2011), 3 (DE-627)627613543 (DE-600)2557172-2 21507511 nnns volume:2 year:2011 number:3 https://doi.org/10.1128/mBio.00045-11 kostenfrei https://doaj.org/article/514aa54432b64bba83cc363007c38c7c kostenfrei https://journals.asm.org/doi/10.1128/mBio.00045-11 kostenfrei https://doaj.org/toc/2150-7511 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2011 3 |
allfieldsSound |
10.1128/mBio.00045-11 doi (DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c DE-627 ger DE-627 rakwb eng QR1-502 Naraporn Somboonna verfasserin aut Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. Microbiology Raymond Wan verfasserin aut David M. Ojcius verfasserin aut Matthew A. Pettengill verfasserin aut Sandeep J. Joseph verfasserin aut Alexander Chang verfasserin aut Ray Hsu verfasserin aut Timothy D. Read verfasserin aut Deborah Dean verfasserin aut In mBio American Society for Microbiology, 2010 2(2011), 3 (DE-627)627613543 (DE-600)2557172-2 21507511 nnns volume:2 year:2011 number:3 https://doi.org/10.1128/mBio.00045-11 kostenfrei https://doaj.org/article/514aa54432b64bba83cc363007c38c7c kostenfrei https://journals.asm.org/doi/10.1128/mBio.00045-11 kostenfrei https://doaj.org/toc/2150-7511 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2011 3 |
language |
English |
source |
In mBio 2(2011), 3 volume:2 year:2011 number:3 |
sourceStr |
In mBio 2(2011), 3 volume:2 year:2011 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microbiology |
isfreeaccess_bool |
true |
container_title |
mBio |
authorswithroles_txt_mv |
Naraporn Somboonna @@aut@@ Raymond Wan @@aut@@ David M. Ojcius @@aut@@ Matthew A. Pettengill @@aut@@ Sandeep J. Joseph @@aut@@ Alexander Chang @@aut@@ Ray Hsu @@aut@@ Timothy D. Read @@aut@@ Deborah Dean @@aut@@ |
publishDateDaySort_date |
2011-01-01T00:00:00Z |
hierarchy_top_id |
627613543 |
id |
DOAJ051099861 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051099861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503001841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/mBio.00045-11</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051099861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ514aa54432b64bba83cc363007c38c7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naraporn Somboonna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raymond Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David M. Ojcius</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthew A. Pettengill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandeep J. Joseph</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ray Hsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Timothy D. Read</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deborah Dean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mBio</subfield><subfield code="d">American Society for Microbiology, 2010</subfield><subfield code="g">2(2011), 3</subfield><subfield code="w">(DE-627)627613543</subfield><subfield code="w">(DE-600)2557172-2</subfield><subfield code="x">21507511</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/mBio.00045-11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/514aa54432b64bba83cc363007c38c7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/mBio.00045-11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-7511</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Naraporn Somboonna |
spellingShingle |
Naraporn Somboonna misc QR1-502 misc Microbiology Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
authorStr |
Naraporn Somboonna |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)627613543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
21507511 |
topic_title |
QR1-502 Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
topic |
misc QR1-502 misc Microbiology |
topic_unstemmed |
misc QR1-502 misc Microbiology |
topic_browse |
misc QR1-502 misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
mBio |
hierarchy_parent_id |
627613543 |
hierarchy_top_title |
mBio |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)627613543 (DE-600)2557172-2 |
title |
Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
ctrlnum |
(DE-627)DOAJ051099861 (DE-599)DOAJ514aa54432b64bba83cc363007c38c7c |
title_full |
Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
author_sort |
Naraporn Somboonna |
journal |
mBio |
journalStr |
mBio |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Naraporn Somboonna Raymond Wan David M. Ojcius Matthew A. Pettengill Sandeep J. Joseph Alexander Chang Ray Hsu Timothy D. Read Deborah Dean |
container_volume |
2 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Naraporn Somboonna |
doi_str_mv |
10.1128/mBio.00045-11 |
author2-role |
verfasserin |
title_sort |
hypervirulent <named-content content-type="genus-species"<chlamydia trachomatis</named-content< clinical strain is a recombinant between lymphogranuloma venereum (l<sub<2</sub<) and d lineages |
callnumber |
QR1-502 |
title_auth |
Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
abstract |
ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. |
abstractGer |
ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. |
abstract_unstemmed |
ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages |
url |
https://doi.org/10.1128/mBio.00045-11 https://doaj.org/article/514aa54432b64bba83cc363007c38c7c https://journals.asm.org/doi/10.1128/mBio.00045-11 https://doaj.org/toc/2150-7511 |
remote_bool |
true |
author2 |
Raymond Wan David M. Ojcius Matthew A. Pettengill Sandeep J. Joseph Alexander Chang Ray Hsu Timothy D. Read Deborah Dean |
author2Str |
Raymond Wan David M. Ojcius Matthew A. Pettengill Sandeep J. Joseph Alexander Chang Ray Hsu Timothy D. Read Deborah Dean |
ppnlink |
627613543 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1128/mBio.00045-11 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T18:25:25.630Z |
_version_ |
1803583357589651456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051099861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503001841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/mBio.00045-11</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051099861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ514aa54432b64bba83cc363007c38c7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naraporn Somboonna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypervirulent <named-content content-type="genus-species"<Chlamydia trachomatis</named-content< Clinical Strain Is a Recombinant between Lymphogranuloma Venereum (L<sub<2</sub<) and D Lineages</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that causes a diversity of severe and debilitating diseases worldwide. Sporadic and ongoing outbreaks of lymphogranuloma venereum (LGV) strains among men who have sex with men (MSM) support the need for research on virulence factors associated with these organisms. Previous analyses have been limited to single genes or genomes of laboratory-adapted reference strain L2/434 and outbreak strain L2b/UCH-1/proctitis. We characterized an unusual LGV strain, termed L2c, isolated from an MSM with severe hemorrhagic proctitis. L2c developed nonfusing, grape-like inclusions and a cytotoxic phenotype in culture, unlike the LGV strains described to date. Deep genome sequencing revealed that L2c was a recombinant of L2 and D strains with conserved clustered regions of genetic exchange, including a 78-kb region and a partial, yet functional, toxin gene that was lost with prolonged culture. Indels (insertions/deletions) were discovered in an ftsK gene promoter and in the tarp and hctB genes, which encode key proteins involved in replication, inclusion formation, and histone H1-like protein activity, respectively. Analyses suggest that these indels affect gene and/or protein function, supporting the in vitro and disease phenotypes. While recombination has been known to occur for C. trachomatis based on gene sequence analyses, we provide the first whole-genome evidence for recombination between a virulent, invasive LGV strain and a noninvasive common urogenital strain. Given the lack of a genetic system for producing stable C. trachomatis mutants, identifying naturally occurring recombinants can clarify gene function and provide opportunities for discovering avenues for genomic manipulation. IMPORTANCE Lymphogranuloma venereum (LGV) is a prevalent and debilitating sexually transmitted disease in developing countries, although there are significant ongoing outbreaks in Australia, Europe, and the United States among men who have sex with men (MSM). Relatively little is known about LGV virulence factors, and only two LGV genomes have been sequenced to date. We isolated an LGV strain from an MSM with severe hemorrhagic proctitis that was morphologically unique in tissue culture compared with other LGV strains. Bioinformatic and statistical analyses identified the strain as a recombinant of L2 and D strains with highly conserved clustered regions of genetic exchange. The unique culture morphology and, more importantly, disease phenotype could be traced to the genes involved in recombination. The findings have implications for bacterial species evolution and, in the case of ongoing LGV outbreaks, suggest that recombination is a mechanism for strain emergence that results in significant disease pathology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raymond Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David M. Ojcius</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthew A. Pettengill</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandeep J. Joseph</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ray Hsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Timothy D. Read</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deborah Dean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mBio</subfield><subfield code="d">American Society for Microbiology, 2010</subfield><subfield code="g">2(2011), 3</subfield><subfield code="w">(DE-627)627613543</subfield><subfield code="w">(DE-600)2557172-2</subfield><subfield code="x">21507511</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/mBio.00045-11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/514aa54432b64bba83cc363007c38c7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/mBio.00045-11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-7511</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.4012585 |