Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm
Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of...
Ausführliche Beschreibung
Autor*in: |
Zarrukh Baig MD [verfasserIn] Nawaf Abu-Omar MD [verfasserIn] Rayyan Khan MSc [verfasserIn] Carlos Verdiales BSc [verfasserIn] Ryan Frehlick BSc [verfasserIn] John Shaw MD [verfasserIn] Fang-Xiang Wu PhD, Eng SMIEE [verfasserIn] Yigang Luo MD [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Technology in Cancer Research & Treatment - SAGE Publishing, 2020, 20(2021) |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2021 |
Links: |
---|
DOI / URN: |
10.1177/15330338211050767 |
---|
Katalog-ID: |
DOAJ051431041 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051431041 | ||
003 | DE-627 | ||
005 | 20230502213212.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/15330338211050767 |2 doi | |
035 | |a (DE-627)DOAJ051431041 | ||
035 | |a (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Zarrukh Baig MD |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. | ||
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Nawaf Abu-Omar MD |e verfasserin |4 aut | |
700 | 0 | |a Rayyan Khan MSc |e verfasserin |4 aut | |
700 | 0 | |a Carlos Verdiales BSc |e verfasserin |4 aut | |
700 | 0 | |a Ryan Frehlick BSc |e verfasserin |4 aut | |
700 | 0 | |a John Shaw MD |e verfasserin |4 aut | |
700 | 0 | |a Fang-Xiang Wu PhD, Eng SMIEE |e verfasserin |4 aut | |
700 | 0 | |a Yigang Luo MD |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Technology in Cancer Research & Treatment |d SAGE Publishing, 2020 |g 20(2021) |w (DE-627)507184734 |w (DE-600)2220436-2 |x 15330338 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1177/15330338211050767 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1177/15330338211050767 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1533-0338 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2021 |
author_variant |
z b m zbm n a o m naom r k m rkm c v b cvb r f b rfb j s m jsm w p e s f x wpesf wpesfx y l m ylm |
---|---|
matchkey_str |
article:15330338:2021----::rgotctnotoenacetcedacrihhuefmc |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.1177/15330338211050767 doi (DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d DE-627 ger DE-627 rakwb eng RC254-282 Zarrukh Baig MD verfasserin aut Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Nawaf Abu-Omar MD verfasserin aut Rayyan Khan MSc verfasserin aut Carlos Verdiales BSc verfasserin aut Ryan Frehlick BSc verfasserin aut John Shaw MD verfasserin aut Fang-Xiang Wu PhD, Eng SMIEE verfasserin aut Yigang Luo MD verfasserin aut In Technology in Cancer Research & Treatment SAGE Publishing, 2020 20(2021) (DE-627)507184734 (DE-600)2220436-2 15330338 nnns volume:20 year:2021 https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d kostenfrei https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/toc/1533-0338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 |
spelling |
10.1177/15330338211050767 doi (DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d DE-627 ger DE-627 rakwb eng RC254-282 Zarrukh Baig MD verfasserin aut Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Nawaf Abu-Omar MD verfasserin aut Rayyan Khan MSc verfasserin aut Carlos Verdiales BSc verfasserin aut Ryan Frehlick BSc verfasserin aut John Shaw MD verfasserin aut Fang-Xiang Wu PhD, Eng SMIEE verfasserin aut Yigang Luo MD verfasserin aut In Technology in Cancer Research & Treatment SAGE Publishing, 2020 20(2021) (DE-627)507184734 (DE-600)2220436-2 15330338 nnns volume:20 year:2021 https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d kostenfrei https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/toc/1533-0338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 |
allfields_unstemmed |
10.1177/15330338211050767 doi (DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d DE-627 ger DE-627 rakwb eng RC254-282 Zarrukh Baig MD verfasserin aut Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Nawaf Abu-Omar MD verfasserin aut Rayyan Khan MSc verfasserin aut Carlos Verdiales BSc verfasserin aut Ryan Frehlick BSc verfasserin aut John Shaw MD verfasserin aut Fang-Xiang Wu PhD, Eng SMIEE verfasserin aut Yigang Luo MD verfasserin aut In Technology in Cancer Research & Treatment SAGE Publishing, 2020 20(2021) (DE-627)507184734 (DE-600)2220436-2 15330338 nnns volume:20 year:2021 https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d kostenfrei https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/toc/1533-0338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 |
allfieldsGer |
10.1177/15330338211050767 doi (DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d DE-627 ger DE-627 rakwb eng RC254-282 Zarrukh Baig MD verfasserin aut Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Nawaf Abu-Omar MD verfasserin aut Rayyan Khan MSc verfasserin aut Carlos Verdiales BSc verfasserin aut Ryan Frehlick BSc verfasserin aut John Shaw MD verfasserin aut Fang-Xiang Wu PhD, Eng SMIEE verfasserin aut Yigang Luo MD verfasserin aut In Technology in Cancer Research & Treatment SAGE Publishing, 2020 20(2021) (DE-627)507184734 (DE-600)2220436-2 15330338 nnns volume:20 year:2021 https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d kostenfrei https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/toc/1533-0338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 |
allfieldsSound |
10.1177/15330338211050767 doi (DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d DE-627 ger DE-627 rakwb eng RC254-282 Zarrukh Baig MD verfasserin aut Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Nawaf Abu-Omar MD verfasserin aut Rayyan Khan MSc verfasserin aut Carlos Verdiales BSc verfasserin aut Ryan Frehlick BSc verfasserin aut John Shaw MD verfasserin aut Fang-Xiang Wu PhD, Eng SMIEE verfasserin aut Yigang Luo MD verfasserin aut In Technology in Cancer Research & Treatment SAGE Publishing, 2020 20(2021) (DE-627)507184734 (DE-600)2220436-2 15330338 nnns volume:20 year:2021 https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d kostenfrei https://doi.org/10.1177/15330338211050767 kostenfrei https://doaj.org/toc/1533-0338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 |
language |
English |
source |
In Technology in Cancer Research & Treatment 20(2021) volume:20 year:2021 |
sourceStr |
In Technology in Cancer Research & Treatment 20(2021) volume:20 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Technology in Cancer Research & Treatment |
authorswithroles_txt_mv |
Zarrukh Baig MD @@aut@@ Nawaf Abu-Omar MD @@aut@@ Rayyan Khan MSc @@aut@@ Carlos Verdiales BSc @@aut@@ Ryan Frehlick BSc @@aut@@ John Shaw MD @@aut@@ Fang-Xiang Wu PhD, Eng SMIEE @@aut@@ Yigang Luo MD @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
507184734 |
id |
DOAJ051431041 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051431041</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502213212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/15330338211050767</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051431041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zarrukh Baig MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nawaf Abu-Omar MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rayyan Khan MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlos Verdiales BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Frehlick BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Shaw MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang-Xiang Wu PhD, Eng SMIEE</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yigang Luo MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Technology in Cancer Research & Treatment</subfield><subfield code="d">SAGE Publishing, 2020</subfield><subfield code="g">20(2021)</subfield><subfield code="w">(DE-627)507184734</subfield><subfield code="w">(DE-600)2220436-2</subfield><subfield code="x">15330338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/15330338211050767</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/15330338211050767</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1533-0338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Zarrukh Baig MD |
spellingShingle |
Zarrukh Baig MD misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
authorStr |
Zarrukh Baig MD |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)507184734 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
15330338 |
topic_title |
RC254-282 Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
topic |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Technology in Cancer Research & Treatment |
hierarchy_parent_id |
507184734 |
hierarchy_top_title |
Technology in Cancer Research & Treatment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)507184734 (DE-600)2220436-2 |
title |
Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
ctrlnum |
(DE-627)DOAJ051431041 (DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d |
title_full |
Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
author_sort |
Zarrukh Baig MD |
journal |
Technology in Cancer Research & Treatment |
journalStr |
Technology in Cancer Research & Treatment |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Zarrukh Baig MD Nawaf Abu-Omar MD Rayyan Khan MSc Carlos Verdiales BSc Ryan Frehlick BSc John Shaw MD Fang-Xiang Wu PhD, Eng SMIEE Yigang Luo MD |
container_volume |
20 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Zarrukh Baig MD |
doi_str_mv |
10.1177/15330338211050767 |
author2-role |
verfasserin |
title_sort |
prognosticating outcome in pancreatic head cancer with the use of a machine learning algorithm |
callnumber |
RC254-282 |
title_auth |
Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
abstract |
Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. |
abstractGer |
Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. |
abstract_unstemmed |
Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm |
url |
https://doi.org/10.1177/15330338211050767 https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d https://doaj.org/toc/1533-0338 |
remote_bool |
true |
author2 |
Nawaf Abu-Omar MD Rayyan Khan MSc Carlos Verdiales BSc Ryan Frehlick BSc John Shaw MD Fang-Xiang Wu PhD, Eng SMIEE Yigang Luo MD |
author2Str |
Nawaf Abu-Omar MD Rayyan Khan MSc Carlos Verdiales BSc Ryan Frehlick BSc John Shaw MD Fang-Xiang Wu PhD, Eng SMIEE Yigang Luo MD |
ppnlink |
507184734 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1177/15330338211050767 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T20:18:58.318Z |
_version_ |
1803590501214978049 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051431041</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502213212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/15330338211050767</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051431041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa01b67a0c3df42a5a008833818b16f4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zarrukh Baig MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prognosticating Outcome in Pancreatic Head Cancer With the use of a Machine Learning Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The purpose of this project is to identify prognostic features in resectable pancreatic head adenocarcinoma and use these features to develop a machine learning algorithm that prognosticates survival for patients pursuing pancreaticoduodenectomy. Methods: A retrospective cohort study of 93 patients who underwent a pancreaticoduodenectomy was performed. The patients were analyzed in 2 groups: Group 1 (n = 38) comprised of patients who survived < 2 years, and Group 2 (n = 55) comprised of patients who survived < 2 years. After comparing the two groups, 9 categorical features and 2 continuous features (11 total) were selected to be statistically significant (p < .05) in predicting outcome after surgery. These 11 features were used to train a machine learning algorithm that prognosticates survival. Results: The algorithm obtained 75% accuracy, 41.9% sensitivity, and 97.5% specificity in predicting whether survival is less than 2 years after surgery. Conclusion: A supervised machine learning algorithm that prognosticates survival can be a useful tool to personalize treatment plans for patients with pancreatic cancer.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nawaf Abu-Omar MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rayyan Khan MSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlos Verdiales BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Frehlick BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Shaw MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang-Xiang Wu PhD, Eng SMIEE</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yigang Luo MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Technology in Cancer Research & Treatment</subfield><subfield code="d">SAGE Publishing, 2020</subfield><subfield code="g">20(2021)</subfield><subfield code="w">(DE-627)507184734</subfield><subfield code="w">(DE-600)2220436-2</subfield><subfield code="x">15330338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/15330338211050767</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a01b67a0c3df42a5a008833818b16f4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/15330338211050767</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1533-0338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.3996477 |