Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador
Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although...
Ausführliche Beschreibung
Autor*in: |
S. Butcher [verfasserIn] A. F. Bell [verfasserIn] S. Hernandez [verfasserIn] M. Ruiz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Earth Science - Frontiers Media S.A., 2014, 9(2021) |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 |
Links: |
---|
DOI / URN: |
10.3389/feart.2021.680865 |
---|
Katalog-ID: |
DOAJ051586967 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051586967 | ||
003 | DE-627 | ||
005 | 20230308162023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/feart.2021.680865 |2 doi | |
035 | |a (DE-627)DOAJ051586967 | ||
035 | |a (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a S. Butcher |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. | ||
650 | 4 | |a long-period seismicity | |
650 | 4 | |a volcano-seismic swarms | |
650 | 4 | |a volcano-glacier interactions | |
650 | 4 | |a volcanic monitoring | |
650 | 4 | |a volcano-tectonic interactions | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a A. F. Bell |e verfasserin |4 aut | |
700 | 0 | |a S. Hernandez |e verfasserin |4 aut | |
700 | 0 | |a M. Ruiz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Earth Science |d Frontiers Media S.A., 2014 |g 9(2021) |w (DE-627)771399731 |w (DE-600)2741235-0 |x 22966463 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.3389/feart.2021.680865 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-6463 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |
author_variant |
s b sb a f b afb s h sh m r mr |
---|---|
matchkey_str |
article:22966463:2021----::vltoosimctdrnatleeioefewknna |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3389/feart.2021.680865 doi (DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab DE-627 ger DE-627 rakwb eng S. Butcher verfasserin aut Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q A. F. Bell verfasserin aut S. Hernandez verfasserin aut M. Ruiz verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2021) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2021 https://doi.org/10.3389/feart.2021.680865 kostenfrei https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 |
spelling |
10.3389/feart.2021.680865 doi (DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab DE-627 ger DE-627 rakwb eng S. Butcher verfasserin aut Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q A. F. Bell verfasserin aut S. Hernandez verfasserin aut M. Ruiz verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2021) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2021 https://doi.org/10.3389/feart.2021.680865 kostenfrei https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 |
allfields_unstemmed |
10.3389/feart.2021.680865 doi (DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab DE-627 ger DE-627 rakwb eng S. Butcher verfasserin aut Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q A. F. Bell verfasserin aut S. Hernandez verfasserin aut M. Ruiz verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2021) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2021 https://doi.org/10.3389/feart.2021.680865 kostenfrei https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 |
allfieldsGer |
10.3389/feart.2021.680865 doi (DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab DE-627 ger DE-627 rakwb eng S. Butcher verfasserin aut Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q A. F. Bell verfasserin aut S. Hernandez verfasserin aut M. Ruiz verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2021) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2021 https://doi.org/10.3389/feart.2021.680865 kostenfrei https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 |
allfieldsSound |
10.3389/feart.2021.680865 doi (DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab DE-627 ger DE-627 rakwb eng S. Butcher verfasserin aut Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q A. F. Bell verfasserin aut S. Hernandez verfasserin aut M. Ruiz verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 9(2021) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:9 year:2021 https://doi.org/10.3389/feart.2021.680865 kostenfrei https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 |
language |
English |
source |
In Frontiers in Earth Science 9(2021) volume:9 year:2021 |
sourceStr |
In Frontiers in Earth Science 9(2021) volume:9 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions Science Q |
isfreeaccess_bool |
true |
container_title |
Frontiers in Earth Science |
authorswithroles_txt_mv |
S. Butcher @@aut@@ A. F. Bell @@aut@@ S. Hernandez @@aut@@ M. Ruiz @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
771399731 |
id |
DOAJ051586967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051586967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308162023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2021.680865</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051586967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. Butcher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-period seismicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-seismic swarms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-glacier interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcanic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-tectonic interactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. F. Bell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Hernandez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2021)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2021.680865</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
author |
S. Butcher |
spellingShingle |
S. Butcher misc long-period seismicity misc volcano-seismic swarms misc volcano-glacier interactions misc volcanic monitoring misc volcano-tectonic interactions misc Science misc Q Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
authorStr |
S. Butcher |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771399731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22966463 |
topic_title |
Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador long-period seismicity volcano-seismic swarms volcano-glacier interactions volcanic monitoring volcano-tectonic interactions |
topic |
misc long-period seismicity misc volcano-seismic swarms misc volcano-glacier interactions misc volcanic monitoring misc volcano-tectonic interactions misc Science misc Q |
topic_unstemmed |
misc long-period seismicity misc volcano-seismic swarms misc volcano-glacier interactions misc volcanic monitoring misc volcano-tectonic interactions misc Science misc Q |
topic_browse |
misc long-period seismicity misc volcano-seismic swarms misc volcano-glacier interactions misc volcanic monitoring misc volcano-tectonic interactions misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Earth Science |
hierarchy_parent_id |
771399731 |
hierarchy_top_title |
Frontiers in Earth Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771399731 (DE-600)2741235-0 |
title |
Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
ctrlnum |
(DE-627)DOAJ051586967 (DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab |
title_full |
Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
author_sort |
S. Butcher |
journal |
Frontiers in Earth Science |
journalStr |
Frontiers in Earth Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
S. Butcher A. F. Bell S. Hernandez M. Ruiz |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
S. Butcher |
doi_str_mv |
10.3389/feart.2021.680865 |
author2-role |
verfasserin |
title_sort |
evolution of seismicity during a stalled episode of reawakening at cayambe volcano, ecuador |
title_auth |
Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
abstract |
Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. |
abstractGer |
Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. |
abstract_unstemmed |
Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador |
url |
https://doi.org/10.3389/feart.2021.680865 https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full https://doaj.org/toc/2296-6463 |
remote_bool |
true |
author2 |
A. F. Bell S. Hernandez M. Ruiz |
author2Str |
A. F. Bell S. Hernandez M. Ruiz |
ppnlink |
771399731 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/feart.2021.680865 |
up_date |
2024-07-03T21:12:06.898Z |
_version_ |
1803593844679245824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051586967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308162023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2021.680865</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051586967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5fdb029cc1f04aacaf6a00b49e70caab</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. Butcher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution of Seismicity During a Stalled Episode of Reawakening at Cayambe Volcano, Ecuador</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cayambe Volcano is an ice-capped, 5,790 m high, andesitic-dacitic volcanic complex, located on the equator in the Eastern Cordillera of the Ecuadorian Andes. An eruption at Cayambe would pose considerable hazards to surrounding communities and a nationally significant agricultural industry. Although the only historically documented eruption was in 1785, it remains persistently restless and long-period (LP) seismicity has been consistently observed at the volcano for over 10 years. However, the sparse monitoring network, and complex interactions between the magmatic, hydrothermal, glacial, and tectonic systems, make unrest at Cayambe challenging to interpret. In June 2016 a seismic “crisis” began at Cayambe, as rates of high frequency volcano-tectonic (VT) earthquakes increased to hundreds of events per day, leading to speculation about the possibility of a forthcoming eruption. The crisis began 2 months after the Mw7.8 Pedernales earthquake, which occurred on the coast, 200 km from Cayambe. Here we show that the 2016 seismicity at Cayambe resulted from four distinct source processes. Cross correlation, template matching, and spectral analysis isolate two source regions for VT earthquakes–tectonic events from a regional fault system and more varied VTs from beneath the volcanic cone. The temporal evolution of the LP seismicity, and mean Q value of 9.9, indicate that these events are most likely generated by flow of hydrothermal fluids. These observations are consistent with a model where a new pulse of magma ascent initially stresses regional tectonic faults, and subsequently drives elevated VT seismicity in the edifice. We draw comparisons from models of volcano-tectonic interactions, and speculate that static stress changes from the Pedernales earthquake put Cayambe volcano in an area of dilation, providing a mechanism for magma ascent. Our findings provide a better understanding of “background” seismicity at Cayambe allowing faster characterization of future crises, and a benchmark to measure changes driven by rapid glacial retreat.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-period seismicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-seismic swarms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-glacier interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcanic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volcano-tectonic interactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. F. Bell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Hernandez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2021)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2021.680865</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5fdb029cc1f04aacaf6a00b49e70caab</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2021.680865/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.401993 |