Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1
Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptop...
Ausführliche Beschreibung
Autor*in: |
Andrea Botticelli [verfasserIn] Silvia Mezi [verfasserIn] Giulia Pomati [verfasserIn] Bruna Cerbelli [verfasserIn] Edoardo Cerbelli [verfasserIn] Michela Roberto [verfasserIn] Raffaele Giusti [verfasserIn] Alessio Cortellini [verfasserIn] Luana Lionetto [verfasserIn] Simone Scagnoli [verfasserIn] Ilaria Grazia Zizzari [verfasserIn] Marianna Nuti [verfasserIn] Maurizio Simmaco [verfasserIn] Paolo Marchetti [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Immunology - Frontiers Media S.A., 2011, 11(2020) |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2020 |
Links: |
---|
DOI / URN: |
10.3389/fimmu.2020.01243 |
---|
Katalog-ID: |
DOAJ051645610 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051645610 | ||
003 | DE-627 | ||
005 | 20230503073618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fimmu.2020.01243 |2 doi | |
035 | |a (DE-627)DOAJ051645610 | ||
035 | |a (DE-599)DOAJb1221017e5fb41068e505c8d03321912 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC581-607 | |
100 | 0 | |a Andrea Botticelli |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. | ||
650 | 4 | |a indoleamine-2,3-dioxygenase | |
650 | 4 | |a tryptophan metabolism | |
650 | 4 | |a tumor immunity | |
650 | 4 | |a kynurenine | |
650 | 4 | |a anti-PD-1 | |
653 | 0 | |a Immunologic diseases. Allergy | |
700 | 0 | |a Silvia Mezi |e verfasserin |4 aut | |
700 | 0 | |a Giulia Pomati |e verfasserin |4 aut | |
700 | 0 | |a Bruna Cerbelli |e verfasserin |4 aut | |
700 | 0 | |a Edoardo Cerbelli |e verfasserin |4 aut | |
700 | 0 | |a Michela Roberto |e verfasserin |4 aut | |
700 | 0 | |a Raffaele Giusti |e verfasserin |4 aut | |
700 | 0 | |a Alessio Cortellini |e verfasserin |4 aut | |
700 | 0 | |a Luana Lionetto |e verfasserin |4 aut | |
700 | 0 | |a Simone Scagnoli |e verfasserin |4 aut | |
700 | 0 | |a Ilaria Grazia Zizzari |e verfasserin |4 aut | |
700 | 0 | |a Marianna Nuti |e verfasserin |4 aut | |
700 | 0 | |a Maurizio Simmaco |e verfasserin |4 aut | |
700 | 0 | |a Paolo Marchetti |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Immunology |d Frontiers Media S.A., 2011 |g 11(2020) |w (DE-627)657998354 |w (DE-600)2606827-8 |x 16643224 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.3389/fimmu.2020.01243 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b1221017e5fb41068e505c8d03321912 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-3224 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2020 |
author_variant |
a b ab s m sm g p gp b c bc e c ec m r mr r g rg a c ac l l ll s s ss i g z igz m n mn m s ms p m pm |
---|---|
matchkey_str |
article:16643224:2020----::rpohnaaoimsmueehnsopiaye |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.3389/fimmu.2020.01243 doi (DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 DE-627 ger DE-627 rakwb eng RC581-607 Andrea Botticelli verfasserin aut Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy Silvia Mezi verfasserin aut Giulia Pomati verfasserin aut Bruna Cerbelli verfasserin aut Edoardo Cerbelli verfasserin aut Michela Roberto verfasserin aut Raffaele Giusti verfasserin aut Alessio Cortellini verfasserin aut Luana Lionetto verfasserin aut Simone Scagnoli verfasserin aut Ilaria Grazia Zizzari verfasserin aut Marianna Nuti verfasserin aut Maurizio Simmaco verfasserin aut Paolo Marchetti verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 11(2020) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:11 year:2020 https://doi.org/10.3389/fimmu.2020.01243 kostenfrei https://doaj.org/article/b1221017e5fb41068e505c8d03321912 kostenfrei https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 |
spelling |
10.3389/fimmu.2020.01243 doi (DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 DE-627 ger DE-627 rakwb eng RC581-607 Andrea Botticelli verfasserin aut Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy Silvia Mezi verfasserin aut Giulia Pomati verfasserin aut Bruna Cerbelli verfasserin aut Edoardo Cerbelli verfasserin aut Michela Roberto verfasserin aut Raffaele Giusti verfasserin aut Alessio Cortellini verfasserin aut Luana Lionetto verfasserin aut Simone Scagnoli verfasserin aut Ilaria Grazia Zizzari verfasserin aut Marianna Nuti verfasserin aut Maurizio Simmaco verfasserin aut Paolo Marchetti verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 11(2020) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:11 year:2020 https://doi.org/10.3389/fimmu.2020.01243 kostenfrei https://doaj.org/article/b1221017e5fb41068e505c8d03321912 kostenfrei https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 |
allfields_unstemmed |
10.3389/fimmu.2020.01243 doi (DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 DE-627 ger DE-627 rakwb eng RC581-607 Andrea Botticelli verfasserin aut Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy Silvia Mezi verfasserin aut Giulia Pomati verfasserin aut Bruna Cerbelli verfasserin aut Edoardo Cerbelli verfasserin aut Michela Roberto verfasserin aut Raffaele Giusti verfasserin aut Alessio Cortellini verfasserin aut Luana Lionetto verfasserin aut Simone Scagnoli verfasserin aut Ilaria Grazia Zizzari verfasserin aut Marianna Nuti verfasserin aut Maurizio Simmaco verfasserin aut Paolo Marchetti verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 11(2020) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:11 year:2020 https://doi.org/10.3389/fimmu.2020.01243 kostenfrei https://doaj.org/article/b1221017e5fb41068e505c8d03321912 kostenfrei https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 |
allfieldsGer |
10.3389/fimmu.2020.01243 doi (DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 DE-627 ger DE-627 rakwb eng RC581-607 Andrea Botticelli verfasserin aut Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy Silvia Mezi verfasserin aut Giulia Pomati verfasserin aut Bruna Cerbelli verfasserin aut Edoardo Cerbelli verfasserin aut Michela Roberto verfasserin aut Raffaele Giusti verfasserin aut Alessio Cortellini verfasserin aut Luana Lionetto verfasserin aut Simone Scagnoli verfasserin aut Ilaria Grazia Zizzari verfasserin aut Marianna Nuti verfasserin aut Maurizio Simmaco verfasserin aut Paolo Marchetti verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 11(2020) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:11 year:2020 https://doi.org/10.3389/fimmu.2020.01243 kostenfrei https://doaj.org/article/b1221017e5fb41068e505c8d03321912 kostenfrei https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 |
allfieldsSound |
10.3389/fimmu.2020.01243 doi (DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 DE-627 ger DE-627 rakwb eng RC581-607 Andrea Botticelli verfasserin aut Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy Silvia Mezi verfasserin aut Giulia Pomati verfasserin aut Bruna Cerbelli verfasserin aut Edoardo Cerbelli verfasserin aut Michela Roberto verfasserin aut Raffaele Giusti verfasserin aut Alessio Cortellini verfasserin aut Luana Lionetto verfasserin aut Simone Scagnoli verfasserin aut Ilaria Grazia Zizzari verfasserin aut Marianna Nuti verfasserin aut Maurizio Simmaco verfasserin aut Paolo Marchetti verfasserin aut In Frontiers in Immunology Frontiers Media S.A., 2011 11(2020) (DE-627)657998354 (DE-600)2606827-8 16643224 nnns volume:11 year:2020 https://doi.org/10.3389/fimmu.2020.01243 kostenfrei https://doaj.org/article/b1221017e5fb41068e505c8d03321912 kostenfrei https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full kostenfrei https://doaj.org/toc/1664-3224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 |
language |
English |
source |
In Frontiers in Immunology 11(2020) volume:11 year:2020 |
sourceStr |
In Frontiers in Immunology 11(2020) volume:11 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 Immunologic diseases. Allergy |
isfreeaccess_bool |
true |
container_title |
Frontiers in Immunology |
authorswithroles_txt_mv |
Andrea Botticelli @@aut@@ Silvia Mezi @@aut@@ Giulia Pomati @@aut@@ Bruna Cerbelli @@aut@@ Edoardo Cerbelli @@aut@@ Michela Roberto @@aut@@ Raffaele Giusti @@aut@@ Alessio Cortellini @@aut@@ Luana Lionetto @@aut@@ Simone Scagnoli @@aut@@ Ilaria Grazia Zizzari @@aut@@ Marianna Nuti @@aut@@ Maurizio Simmaco @@aut@@ Paolo Marchetti @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
657998354 |
id |
DOAJ051645610 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051645610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fimmu.2020.01243</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051645610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb1221017e5fb41068e505c8d03321912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrea Botticelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio &gt; 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio &gt; 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoleamine-2,3-dioxygenase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tryptophan metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor immunity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kynurenine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-PD-1</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Silvia Mezi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Pomati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruna Cerbelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Cerbelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michela Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raffaele Giusti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessio Cortellini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luana Lionetto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Scagnoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilaria Grazia Zizzari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marianna Nuti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maurizio Simmaco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Marchetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Immunology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">11(2020)</subfield><subfield code="w">(DE-627)657998354</subfield><subfield code="w">(DE-600)2606827-8</subfield><subfield code="x">16643224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fimmu.2020.01243</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b1221017e5fb41068e505c8d03321912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-3224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Andrea Botticelli |
spellingShingle |
Andrea Botticelli misc RC581-607 misc indoleamine-2,3-dioxygenase misc tryptophan metabolism misc tumor immunity misc kynurenine misc anti-PD-1 misc Immunologic diseases. Allergy Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
authorStr |
Andrea Botticelli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657998354 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC581-607 |
illustrated |
Not Illustrated |
issn |
16643224 |
topic_title |
RC581-607 Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 indoleamine-2,3-dioxygenase tryptophan metabolism tumor immunity kynurenine anti-PD-1 |
topic |
misc RC581-607 misc indoleamine-2,3-dioxygenase misc tryptophan metabolism misc tumor immunity misc kynurenine misc anti-PD-1 misc Immunologic diseases. Allergy |
topic_unstemmed |
misc RC581-607 misc indoleamine-2,3-dioxygenase misc tryptophan metabolism misc tumor immunity misc kynurenine misc anti-PD-1 misc Immunologic diseases. Allergy |
topic_browse |
misc RC581-607 misc indoleamine-2,3-dioxygenase misc tryptophan metabolism misc tumor immunity misc kynurenine misc anti-PD-1 misc Immunologic diseases. Allergy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Immunology |
hierarchy_parent_id |
657998354 |
hierarchy_top_title |
Frontiers in Immunology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657998354 (DE-600)2606827-8 |
title |
Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
ctrlnum |
(DE-627)DOAJ051645610 (DE-599)DOAJb1221017e5fb41068e505c8d03321912 |
title_full |
Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
author_sort |
Andrea Botticelli |
journal |
Frontiers in Immunology |
journalStr |
Frontiers in Immunology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Andrea Botticelli Silvia Mezi Giulia Pomati Bruna Cerbelli Edoardo Cerbelli Michela Roberto Raffaele Giusti Alessio Cortellini Luana Lionetto Simone Scagnoli Ilaria Grazia Zizzari Marianna Nuti Maurizio Simmaco Paolo Marchetti |
container_volume |
11 |
class |
RC581-607 |
format_se |
Elektronische Aufsätze |
author-letter |
Andrea Botticelli |
doi_str_mv |
10.3389/fimmu.2020.01243 |
author2-role |
verfasserin |
title_sort |
tryptophan catabolism as immune mechanism of primary resistance to anti-pd-1 |
callnumber |
RC581-607 |
title_auth |
Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
abstract |
Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. |
abstractGer |
Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. |
abstract_unstemmed |
Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio > 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio > 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1 |
url |
https://doi.org/10.3389/fimmu.2020.01243 https://doaj.org/article/b1221017e5fb41068e505c8d03321912 https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full https://doaj.org/toc/1664-3224 |
remote_bool |
true |
author2 |
Silvia Mezi Giulia Pomati Bruna Cerbelli Edoardo Cerbelli Michela Roberto Raffaele Giusti Alessio Cortellini Luana Lionetto Simone Scagnoli Ilaria Grazia Zizzari Marianna Nuti Maurizio Simmaco Paolo Marchetti |
author2Str |
Silvia Mezi Giulia Pomati Bruna Cerbelli Edoardo Cerbelli Michela Roberto Raffaele Giusti Alessio Cortellini Luana Lionetto Simone Scagnoli Ilaria Grazia Zizzari Marianna Nuti Maurizio Simmaco Paolo Marchetti |
ppnlink |
657998354 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fimmu.2020.01243 |
callnumber-a |
RC581-607 |
up_date |
2024-07-03T21:30:38.147Z |
_version_ |
1803595009911422977 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051645610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fimmu.2020.01243</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051645610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb1221017e5fb41068e505c8d03321912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-607</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrea Botticelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Clinical trials showed that only a subset of patients benefits from immunotherapy, suggesting the need to identify new predictive biomarker of resistance. Indoleamine-2,3-dioxygenase (IDO) has been proposed as a mechanism of resistance to anti-PD-1 treatment, and serum kynurenine/tryptophan (kyn/trp) ratio represents a possible marker of IDO activity.Methods: Metastatic non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and head and neck squamous cell carcinoma (HNSCC) treated with nivolumab as second-line treatment were included in this prospective study. Baseline serum kyn and trp levels were measured by high-performance liquid chromatography to define the kyn/trp ratio. The χ2-test and t-test were applied to compare frequencies and mean values of kyn/trp ratio between subgroups with distinct clinical/pathological features, respectively. Median baseline kyn/trp ratio was defined and used as cutoff in order to stratify the patients. The association between kyn/trp ratio, clinical/pathological characteristics, response, progression-free survival (PFS), and overall survival (OS) was analyzed.Results: Fifty-five patients were included. Mean baseline serum kyn/trp ratio was significantly lower in female than in male patients (0.048 vs. 0.059, respectively, p = 0.044) and in patients with lung metastasis than in others (0.053 vs. 0.080, respectively, p = 0.017). Mean baseline serum kyn/trp ratio was significantly higher in early progressor patients with both squamous and non-squamous NSCLC (p = 0.003) and with a squamous histology cancer (19 squamous NSCLC and 14 HNSCC, p = 0.029). The median value of kyn/trp ratio was 0.06 in the overall population. With the use of median value as cutoff, patients with kyn/trp ratio &gt; 0.06 had a higher risk to develop an early progression (within 3 months) to nivolumab with a trend toward significance (p = 0.064 at multivariate analysis). Patients presenting a baseline kyn/trp ratio ≤0.06 showed a longer PFS [median 8 vs. 3 months; hazard ratio (HR): 0.49; 95% confidence interval (CI) 0.24–1.02; p = 0.058] and a significantly better OS than did those with a kyn/trp ratio &gt; 0.06 (median 16 vs. 4 months; HR: 0.39; 95% CI 0.19–0.82; p = 0.013).Conclusion: Serum kyn/trp ratio could have both prognostic and predictive values in patients with solid tumor treated with immunotherapy, probably reflecting a primary immune-resistant mechanism regardless of the primary tumor histology. Its relative weight is significantly related to gender, site of metastasis, NSCLC, and squamous histology, although these suggestive data need to be confirmed in larger studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoleamine-2,3-dioxygenase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tryptophan metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor immunity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kynurenine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-PD-1</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Immunologic diseases. Allergy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Silvia Mezi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Pomati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruna Cerbelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Cerbelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michela Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raffaele Giusti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessio Cortellini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luana Lionetto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Scagnoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilaria Grazia Zizzari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marianna Nuti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maurizio Simmaco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Marchetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Immunology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">11(2020)</subfield><subfield code="w">(DE-627)657998354</subfield><subfield code="w">(DE-600)2606827-8</subfield><subfield code="x">16643224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fimmu.2020.01243</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b1221017e5fb41068e505c8d03321912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fimmu.2020.01243/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-3224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.402501 |