Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals
Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional eva...
Ausführliche Beschreibung
Autor*in: |
Xiwen Liu [verfasserIn] Xiaoming Tao [verfasserIn] Yafeng Zhan [verfasserIn] Jianhua Lu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 92778-92790 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:92778-92790 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2928135 |
---|
Katalog-ID: |
DOAJ051756951 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051756951 | ||
003 | DE-627 | ||
005 | 20230503073304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2928135 |2 doi | |
035 | |a (DE-627)DOAJ051756951 | ||
035 | |a (DE-599)DOAJe955d67506fa4246825b5f66101e2100 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Xiwen Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. | ||
650 | 4 | |a Decision tree | |
650 | 4 | |a mobile terminals | |
650 | 4 | |a estimation model | |
650 | 4 | |a QoE | |
650 | 4 | |a video services | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Xiaoming Tao |e verfasserin |4 aut | |
700 | 0 | |a Yafeng Zhan |e verfasserin |4 aut | |
700 | 0 | |a Jianhua Lu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 92778-92790 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:92778-92790 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2928135 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e955d67506fa4246825b5f66101e2100 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8759037/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 92778-92790 |
author_variant |
x l xl x t xt y z yz j l jl |
---|---|
matchkey_str |
article:21693536:2019----::eihrlesnmntrnqaiyfxeineovdoevcs |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2928135 doi (DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 DE-627 ger DE-627 rakwb eng TK1-9971 Xiwen Liu verfasserin aut Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering Xiaoming Tao verfasserin aut Yafeng Zhan verfasserin aut Jianhua Lu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 92778-92790 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:92778-92790 https://doi.org/10.1109/ACCESS.2019.2928135 kostenfrei https://doaj.org/article/e955d67506fa4246825b5f66101e2100 kostenfrei https://ieeexplore.ieee.org/document/8759037/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 92778-92790 |
spelling |
10.1109/ACCESS.2019.2928135 doi (DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 DE-627 ger DE-627 rakwb eng TK1-9971 Xiwen Liu verfasserin aut Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering Xiaoming Tao verfasserin aut Yafeng Zhan verfasserin aut Jianhua Lu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 92778-92790 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:92778-92790 https://doi.org/10.1109/ACCESS.2019.2928135 kostenfrei https://doaj.org/article/e955d67506fa4246825b5f66101e2100 kostenfrei https://ieeexplore.ieee.org/document/8759037/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 92778-92790 |
allfields_unstemmed |
10.1109/ACCESS.2019.2928135 doi (DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 DE-627 ger DE-627 rakwb eng TK1-9971 Xiwen Liu verfasserin aut Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering Xiaoming Tao verfasserin aut Yafeng Zhan verfasserin aut Jianhua Lu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 92778-92790 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:92778-92790 https://doi.org/10.1109/ACCESS.2019.2928135 kostenfrei https://doaj.org/article/e955d67506fa4246825b5f66101e2100 kostenfrei https://ieeexplore.ieee.org/document/8759037/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 92778-92790 |
allfieldsGer |
10.1109/ACCESS.2019.2928135 doi (DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 DE-627 ger DE-627 rakwb eng TK1-9971 Xiwen Liu verfasserin aut Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering Xiaoming Tao verfasserin aut Yafeng Zhan verfasserin aut Jianhua Lu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 92778-92790 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:92778-92790 https://doi.org/10.1109/ACCESS.2019.2928135 kostenfrei https://doaj.org/article/e955d67506fa4246825b5f66101e2100 kostenfrei https://ieeexplore.ieee.org/document/8759037/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 92778-92790 |
allfieldsSound |
10.1109/ACCESS.2019.2928135 doi (DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 DE-627 ger DE-627 rakwb eng TK1-9971 Xiwen Liu verfasserin aut Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering Xiaoming Tao verfasserin aut Yafeng Zhan verfasserin aut Jianhua Lu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 92778-92790 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:92778-92790 https://doi.org/10.1109/ACCESS.2019.2928135 kostenfrei https://doaj.org/article/e955d67506fa4246825b5f66101e2100 kostenfrei https://ieeexplore.ieee.org/document/8759037/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 92778-92790 |
language |
English |
source |
In IEEE Access 7(2019), Seite 92778-92790 volume:7 year:2019 pages:92778-92790 |
sourceStr |
In IEEE Access 7(2019), Seite 92778-92790 volume:7 year:2019 pages:92778-92790 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Decision tree mobile terminals estimation model QoE video services Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Xiwen Liu @@aut@@ Xiaoming Tao @@aut@@ Yafeng Zhan @@aut@@ Jianhua Lu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ051756951 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051756951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2928135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051756951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe955d67506fa4246825b5f66101e2100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiwen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile terminals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">estimation model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video services</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoming Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yafeng Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhua Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 92778-92790</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:92778-92790</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2928135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e955d67506fa4246825b5f66101e2100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8759037/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">92778-92790</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiwen Liu |
spellingShingle |
Xiwen Liu misc TK1-9971 misc Decision tree misc mobile terminals misc estimation model misc QoE misc video services misc Electrical engineering. Electronics. Nuclear engineering Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
authorStr |
Xiwen Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals Decision tree mobile terminals estimation model QoE video services |
topic |
misc TK1-9971 misc Decision tree misc mobile terminals misc estimation model misc QoE misc video services misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Decision tree misc mobile terminals misc estimation model misc QoE misc video services misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Decision tree misc mobile terminals misc estimation model misc QoE misc video services misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
ctrlnum |
(DE-627)DOAJ051756951 (DE-599)DOAJe955d67506fa4246825b5f66101e2100 |
title_full |
Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
author_sort |
Xiwen Liu |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
92778 |
author_browse |
Xiwen Liu Xiaoming Tao Yafeng Zhan Jianhua Lu |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiwen Liu |
doi_str_mv |
10.1109/ACCESS.2019.2928135 |
author2-role |
verfasserin |
title_sort |
peripheral sensing: monitoring quality of experience for video services based on mobile terminals |
callnumber |
TK1-9971 |
title_auth |
Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
abstract |
Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. |
abstractGer |
Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. |
abstract_unstemmed |
Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals |
url |
https://doi.org/10.1109/ACCESS.2019.2928135 https://doaj.org/article/e955d67506fa4246825b5f66101e2100 https://ieeexplore.ieee.org/document/8759037/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Xiaoming Tao Yafeng Zhan Jianhua Lu |
author2Str |
Xiaoming Tao Yafeng Zhan Jianhua Lu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2928135 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T22:07:12.076Z |
_version_ |
1803597310415863808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051756951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2928135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051756951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe955d67506fa4246825b5f66101e2100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiwen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral Sensing: Monitoring Quality of Experience for Video Services Based on Mobile Terminals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quality of experience (QoE), which directly relates to both technical evolvement and profit promotion, is a vital concern for mobile video services. However, the wireless network operators have long been troubled by the problem of lacking effective QoE monitoring approaches since the traditional evaluation methods of communication quality are objective metrics oriented. Considering that mobile terminals are the network elements closest to users, it is promising to realize a real-time QoE estimation for video services by fully utilizing the sensing capabilities of mobile terminals. As the first step, we specifically develop a mobile video testing application. With support from China Unicom, one of the three major wireless network operators in China, over 80 000 data records are collected under the real-world conditions. The collected data consist of four types of subjective scores and 13 objective parameters concerning video attributes, network performance, device capability, playback events, and external factors. After preprocessing the data set through correlation analysis, we establish the two QoE estimation models based on the C4.5 method and the gradient boosting decision tree (GBDT) method, respectively. The experimental results demonstrate that the proposed models can achieve remarkable estimation performances and outperform the baseline models. Specifically, the overall estimation accuracy of the GBDT-based model is approximately 80% for a five-level scale and approaches 90% when a more practical 3-level scale is adopted. Finally, we comprehensively discuss the estimation performances based on characteristics of the data and validate the feasibility of estimating QoE based on mobile terminals-the “peripheral sensors” of the mobile networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile terminals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">estimation model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video services</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoming Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yafeng Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhua Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 92778-92790</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:92778-92790</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2928135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e955d67506fa4246825b5f66101e2100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8759037/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">92778-92790</subfield></datafield></record></collection>
|
score |
7.4016895 |