Recent advances in Raman technology with applications in agriculture, food and biosystems: A review
Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical...
Ausführliche Beschreibung
Autor*in: |
Shizhuang Weng [verfasserIn] Wenxiu Zhu [verfasserIn] Xueyan Zhang [verfasserIn] Hecai Yuan [verfasserIn] Ling Zheng [verfasserIn] Jinling Zhao [verfasserIn] Linsheng Huang [verfasserIn] Ping Han [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Artificial Intelligence in Agriculture - KeAi Communications Co., Ltd., 2020, 3(2019), Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2019 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1016/j.aiia.2019.11.001 |
---|
Katalog-ID: |
DOAJ051838486 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051838486 | ||
003 | DE-627 | ||
005 | 20230308163008.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aiia.2019.11.001 |2 doi | |
035 | |a (DE-627)DOAJ051838486 | ||
035 | |a (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Shizhuang Weng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods | ||
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Wenxiu Zhu |e verfasserin |4 aut | |
700 | 0 | |a Xueyan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Hecai Yuan |e verfasserin |4 aut | |
700 | 0 | |a Ling Zheng |e verfasserin |4 aut | |
700 | 0 | |a Jinling Zhao |e verfasserin |4 aut | |
700 | 0 | |a Linsheng Huang |e verfasserin |4 aut | |
700 | 0 | |a Ping Han |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Artificial Intelligence in Agriculture |d KeAi Communications Co., Ltd., 2020 |g 3(2019), Seite 10 |w (DE-627)1663653283 |w (DE-600)2970491-1 |x 25897217 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2019 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aiia.2019.11.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589721719300327 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-7217 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2019 |h 10 |
author_variant |
s w sw w z wz x z xz h y hy l z lz j z jz l h lh p h ph |
---|---|
matchkey_str |
article:25897217:2019----::eetdacsnaatcnlgwtapiainiarclueo |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1016/j.aiia.2019.11.001 doi (DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c DE-627 ger DE-627 rakwb eng Shizhuang Weng verfasserin aut Recent advances in Raman technology with applications in agriculture, food and biosystems: A review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods Agriculture S Wenxiu Zhu verfasserin aut Xueyan Zhang verfasserin aut Hecai Yuan verfasserin aut Ling Zheng verfasserin aut Jinling Zhao verfasserin aut Linsheng Huang verfasserin aut Ping Han verfasserin aut In Artificial Intelligence in Agriculture KeAi Communications Co., Ltd., 2020 3(2019), Seite 10 (DE-627)1663653283 (DE-600)2970491-1 25897217 nnns volume:3 year:2019 pages:10 https://doi.org/10.1016/j.aiia.2019.11.001 kostenfrei https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c kostenfrei http://www.sciencedirect.com/science/article/pii/S2589721719300327 kostenfrei https://doaj.org/toc/2589-7217 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2019 10 |
spelling |
10.1016/j.aiia.2019.11.001 doi (DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c DE-627 ger DE-627 rakwb eng Shizhuang Weng verfasserin aut Recent advances in Raman technology with applications in agriculture, food and biosystems: A review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods Agriculture S Wenxiu Zhu verfasserin aut Xueyan Zhang verfasserin aut Hecai Yuan verfasserin aut Ling Zheng verfasserin aut Jinling Zhao verfasserin aut Linsheng Huang verfasserin aut Ping Han verfasserin aut In Artificial Intelligence in Agriculture KeAi Communications Co., Ltd., 2020 3(2019), Seite 10 (DE-627)1663653283 (DE-600)2970491-1 25897217 nnns volume:3 year:2019 pages:10 https://doi.org/10.1016/j.aiia.2019.11.001 kostenfrei https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c kostenfrei http://www.sciencedirect.com/science/article/pii/S2589721719300327 kostenfrei https://doaj.org/toc/2589-7217 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2019 10 |
allfields_unstemmed |
10.1016/j.aiia.2019.11.001 doi (DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c DE-627 ger DE-627 rakwb eng Shizhuang Weng verfasserin aut Recent advances in Raman technology with applications in agriculture, food and biosystems: A review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods Agriculture S Wenxiu Zhu verfasserin aut Xueyan Zhang verfasserin aut Hecai Yuan verfasserin aut Ling Zheng verfasserin aut Jinling Zhao verfasserin aut Linsheng Huang verfasserin aut Ping Han verfasserin aut In Artificial Intelligence in Agriculture KeAi Communications Co., Ltd., 2020 3(2019), Seite 10 (DE-627)1663653283 (DE-600)2970491-1 25897217 nnns volume:3 year:2019 pages:10 https://doi.org/10.1016/j.aiia.2019.11.001 kostenfrei https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c kostenfrei http://www.sciencedirect.com/science/article/pii/S2589721719300327 kostenfrei https://doaj.org/toc/2589-7217 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2019 10 |
allfieldsGer |
10.1016/j.aiia.2019.11.001 doi (DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c DE-627 ger DE-627 rakwb eng Shizhuang Weng verfasserin aut Recent advances in Raman technology with applications in agriculture, food and biosystems: A review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods Agriculture S Wenxiu Zhu verfasserin aut Xueyan Zhang verfasserin aut Hecai Yuan verfasserin aut Ling Zheng verfasserin aut Jinling Zhao verfasserin aut Linsheng Huang verfasserin aut Ping Han verfasserin aut In Artificial Intelligence in Agriculture KeAi Communications Co., Ltd., 2020 3(2019), Seite 10 (DE-627)1663653283 (DE-600)2970491-1 25897217 nnns volume:3 year:2019 pages:10 https://doi.org/10.1016/j.aiia.2019.11.001 kostenfrei https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c kostenfrei http://www.sciencedirect.com/science/article/pii/S2589721719300327 kostenfrei https://doaj.org/toc/2589-7217 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2019 10 |
allfieldsSound |
10.1016/j.aiia.2019.11.001 doi (DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c DE-627 ger DE-627 rakwb eng Shizhuang Weng verfasserin aut Recent advances in Raman technology with applications in agriculture, food and biosystems: A review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods Agriculture S Wenxiu Zhu verfasserin aut Xueyan Zhang verfasserin aut Hecai Yuan verfasserin aut Ling Zheng verfasserin aut Jinling Zhao verfasserin aut Linsheng Huang verfasserin aut Ping Han verfasserin aut In Artificial Intelligence in Agriculture KeAi Communications Co., Ltd., 2020 3(2019), Seite 10 (DE-627)1663653283 (DE-600)2970491-1 25897217 nnns volume:3 year:2019 pages:10 https://doi.org/10.1016/j.aiia.2019.11.001 kostenfrei https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c kostenfrei http://www.sciencedirect.com/science/article/pii/S2589721719300327 kostenfrei https://doaj.org/toc/2589-7217 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2019 10 |
language |
English |
source |
In Artificial Intelligence in Agriculture 3(2019), Seite 10 volume:3 year:2019 pages:10 |
sourceStr |
In Artificial Intelligence in Agriculture 3(2019), Seite 10 volume:3 year:2019 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Agriculture S |
isfreeaccess_bool |
true |
container_title |
Artificial Intelligence in Agriculture |
authorswithroles_txt_mv |
Shizhuang Weng @@aut@@ Wenxiu Zhu @@aut@@ Xueyan Zhang @@aut@@ Hecai Yuan @@aut@@ Ling Zheng @@aut@@ Jinling Zhao @@aut@@ Linsheng Huang @@aut@@ Ping Han @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
1663653283 |
id |
DOAJ051838486 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051838486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308163008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aiia.2019.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051838486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shizhuang Weng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent advances in Raman technology with applications in agriculture, food and biosystems: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenxiu Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueyan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hecai Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinling Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linsheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Artificial Intelligence in Agriculture</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">3(2019), Seite 10</subfield><subfield code="w">(DE-627)1663653283</subfield><subfield code="w">(DE-600)2970491-1</subfield><subfield code="x">25897217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aiia.2019.11.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589721719300327</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7217</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2019</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
author |
Shizhuang Weng |
spellingShingle |
Shizhuang Weng misc Agriculture misc S Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
authorStr |
Shizhuang Weng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1663653283 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25897217 |
topic_title |
Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
topic |
misc Agriculture misc S |
topic_unstemmed |
misc Agriculture misc S |
topic_browse |
misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Artificial Intelligence in Agriculture |
hierarchy_parent_id |
1663653283 |
hierarchy_top_title |
Artificial Intelligence in Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1663653283 (DE-600)2970491-1 |
title |
Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
ctrlnum |
(DE-627)DOAJ051838486 (DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c |
title_full |
Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
author_sort |
Shizhuang Weng |
journal |
Artificial Intelligence in Agriculture |
journalStr |
Artificial Intelligence in Agriculture |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Shizhuang Weng Wenxiu Zhu Xueyan Zhang Hecai Yuan Ling Zheng Jinling Zhao Linsheng Huang Ping Han |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Shizhuang Weng |
doi_str_mv |
10.1016/j.aiia.2019.11.001 |
author2-role |
verfasserin |
title_sort |
recent advances in raman technology with applications in agriculture, food and biosystems: a review |
title_auth |
Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
abstract |
Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods |
abstractGer |
Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods |
abstract_unstemmed |
Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Recent advances in Raman technology with applications in agriculture, food and biosystems: A review |
url |
https://doi.org/10.1016/j.aiia.2019.11.001 https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c http://www.sciencedirect.com/science/article/pii/S2589721719300327 https://doaj.org/toc/2589-7217 |
remote_bool |
true |
author2 |
Wenxiu Zhu Xueyan Zhang Hecai Yuan Ling Zheng Jinling Zhao Linsheng Huang Ping Han |
author2Str |
Wenxiu Zhu Xueyan Zhang Hecai Yuan Ling Zheng Jinling Zhao Linsheng Huang Ping Han |
ppnlink |
1663653283 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aiia.2019.11.001 |
up_date |
2024-07-03T22:31:44.214Z |
_version_ |
1803598854058147840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051838486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308163008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aiia.2019.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051838486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6b024b8300684cebb40b0d457a018e6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shizhuang Weng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent advances in Raman technology with applications in agriculture, food and biosystems: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Raman technology, which covers Raman spectroscopy (RS) and its various derivative methods, has been widely applied in detection of various substances in agriculture, food and biosystems. This article reviews the recent advances in two mainstream Raman technologies as RS and SERS, including technical evolution, application and challenges, and spectral processing methods. Firstly, the origin, principle, defect, and development of RS were introduced. Then, the current situation, existing problems, and development trend of RS and SERS were discussed in agriculture, food, and biosystems, such as adulteration recognition, plant diseases identification, farm chemicals detection, food additives determination, and toxins analysis. At last, the spectral analysis methods include noise reduction, feature extraction or variable selection, and modeling were introduced in detail, which can realize the automatic and intelligent analysis of spectra without relying on professionals. Keywords: Raman technology, Adulteration, Plant diseases, Farm chemicals, Toxins, Spectral processing methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenxiu Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueyan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hecai Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinling Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linsheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Artificial Intelligence in Agriculture</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">3(2019), Seite 10</subfield><subfield code="w">(DE-627)1663653283</subfield><subfield code="w">(DE-600)2970491-1</subfield><subfield code="x">25897217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aiia.2019.11.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6b024b8300684cebb40b0d457a018e6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589721719300327</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7217</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2019</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.401412 |