Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC
The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was devel...
Ausführliche Beschreibung
Autor*in: |
Zhenyu Wang [verfasserIn] Shichang Liu [verfasserIn] Ding She [verfasserIn] Yang Su [verfasserIn] Yixue Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nuclear Engineering and Technology - Elsevier, 2016, 53(2021), 2, Seite 430-438 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2021 ; number:2 ; pages:430-438 |
Links: |
---|
DOI / URN: |
10.1016/j.net.2020.07.018 |
---|
Katalog-ID: |
DOAJ051915367 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ051915367 | ||
003 | DE-627 | ||
005 | 20230308163342.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.net.2020.07.018 |2 doi | |
035 | |a (DE-627)DOAJ051915367 | ||
035 | |a (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK9001-9401 | |
100 | 0 | |a Zhenyu Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. | ||
650 | 4 | |a Monte Carlo | |
650 | 4 | |a Function expansion tally | |
650 | 4 | |a Order selection strategy | |
650 | 4 | |a RMC | |
653 | 0 | |a Nuclear engineering. Atomic power | |
700 | 0 | |a Shichang Liu |e verfasserin |4 aut | |
700 | 0 | |a Ding She |e verfasserin |4 aut | |
700 | 0 | |a Yang Su |e verfasserin |4 aut | |
700 | 0 | |a Yixue Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nuclear Engineering and Technology |d Elsevier, 2016 |g 53(2021), 2, Seite 430-438 |w (DE-627)63243855X |w (DE-600)2566624-1 |x 17385733 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2021 |g number:2 |g pages:430-438 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.net.2020.07.018 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1738573320302370 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1738-5733 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 53 |j 2021 |e 2 |h 430-438 |
author_variant |
z w zw s l sl d s ds y s ys y c yc |
---|---|
matchkey_str |
article:17385733:2021----::mlmnainfucinlxasotlyehdnodreetosr |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1016/j.net.2020.07.018 doi (DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 DE-627 ger DE-627 rakwb eng TK9001-9401 Zhenyu Wang verfasserin aut Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power Shichang Liu verfasserin aut Ding She verfasserin aut Yang Su verfasserin aut Yixue Chen verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 2, Seite 430-438 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:2 pages:430-438 https://doi.org/10.1016/j.net.2020.07.018 kostenfrei https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573320302370 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 2 430-438 |
spelling |
10.1016/j.net.2020.07.018 doi (DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 DE-627 ger DE-627 rakwb eng TK9001-9401 Zhenyu Wang verfasserin aut Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power Shichang Liu verfasserin aut Ding She verfasserin aut Yang Su verfasserin aut Yixue Chen verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 2, Seite 430-438 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:2 pages:430-438 https://doi.org/10.1016/j.net.2020.07.018 kostenfrei https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573320302370 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 2 430-438 |
allfields_unstemmed |
10.1016/j.net.2020.07.018 doi (DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 DE-627 ger DE-627 rakwb eng TK9001-9401 Zhenyu Wang verfasserin aut Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power Shichang Liu verfasserin aut Ding She verfasserin aut Yang Su verfasserin aut Yixue Chen verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 2, Seite 430-438 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:2 pages:430-438 https://doi.org/10.1016/j.net.2020.07.018 kostenfrei https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573320302370 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 2 430-438 |
allfieldsGer |
10.1016/j.net.2020.07.018 doi (DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 DE-627 ger DE-627 rakwb eng TK9001-9401 Zhenyu Wang verfasserin aut Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power Shichang Liu verfasserin aut Ding She verfasserin aut Yang Su verfasserin aut Yixue Chen verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 2, Seite 430-438 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:2 pages:430-438 https://doi.org/10.1016/j.net.2020.07.018 kostenfrei https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573320302370 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 2 430-438 |
allfieldsSound |
10.1016/j.net.2020.07.018 doi (DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 DE-627 ger DE-627 rakwb eng TK9001-9401 Zhenyu Wang verfasserin aut Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power Shichang Liu verfasserin aut Ding She verfasserin aut Yang Su verfasserin aut Yixue Chen verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 53(2021), 2, Seite 430-438 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:53 year:2021 number:2 pages:430-438 https://doi.org/10.1016/j.net.2020.07.018 kostenfrei https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573320302370 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 53 2021 2 430-438 |
language |
English |
source |
In Nuclear Engineering and Technology 53(2021), 2, Seite 430-438 volume:53 year:2021 number:2 pages:430-438 |
sourceStr |
In Nuclear Engineering and Technology 53(2021), 2, Seite 430-438 volume:53 year:2021 number:2 pages:430-438 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Monte Carlo Function expansion tally Order selection strategy RMC Nuclear engineering. Atomic power |
isfreeaccess_bool |
true |
container_title |
Nuclear Engineering and Technology |
authorswithroles_txt_mv |
Zhenyu Wang @@aut@@ Shichang Liu @@aut@@ Ding She @@aut@@ Yang Su @@aut@@ Yixue Chen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
63243855X |
id |
DOAJ051915367 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051915367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308163342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2020.07.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051915367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function expansion tally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order selection strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RMC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shichang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ding She</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yixue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">53(2021), 2, Seite 430-438</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:430-438</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2020.07.018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573320302370</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="h">430-438</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zhenyu Wang |
spellingShingle |
Zhenyu Wang misc TK9001-9401 misc Monte Carlo misc Function expansion tally misc Order selection strategy misc RMC misc Nuclear engineering. Atomic power Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
authorStr |
Zhenyu Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)63243855X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK9001-9401 |
illustrated |
Not Illustrated |
issn |
17385733 |
topic_title |
TK9001-9401 Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC Monte Carlo Function expansion tally Order selection strategy RMC |
topic |
misc TK9001-9401 misc Monte Carlo misc Function expansion tally misc Order selection strategy misc RMC misc Nuclear engineering. Atomic power |
topic_unstemmed |
misc TK9001-9401 misc Monte Carlo misc Function expansion tally misc Order selection strategy misc RMC misc Nuclear engineering. Atomic power |
topic_browse |
misc TK9001-9401 misc Monte Carlo misc Function expansion tally misc Order selection strategy misc RMC misc Nuclear engineering. Atomic power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear Engineering and Technology |
hierarchy_parent_id |
63243855X |
hierarchy_top_title |
Nuclear Engineering and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)63243855X (DE-600)2566624-1 |
title |
Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
ctrlnum |
(DE-627)DOAJ051915367 (DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5 |
title_full |
Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
author_sort |
Zhenyu Wang |
journal |
Nuclear Engineering and Technology |
journalStr |
Nuclear Engineering and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
430 |
author_browse |
Zhenyu Wang Shichang Liu Ding She Yang Su Yixue Chen |
container_volume |
53 |
class |
TK9001-9401 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhenyu Wang |
doi_str_mv |
10.1016/j.net.2020.07.018 |
author2-role |
verfasserin |
title_sort |
implementation of functional expansion tally method and order selection strategy in monte carlo code rmc |
callnumber |
TK9001-9401 |
title_auth |
Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
abstract |
The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. |
abstractGer |
The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. |
abstract_unstemmed |
The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC |
url |
https://doi.org/10.1016/j.net.2020.07.018 https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5 http://www.sciencedirect.com/science/article/pii/S1738573320302370 https://doaj.org/toc/1738-5733 |
remote_bool |
true |
author2 |
Shichang Liu Ding She Yang Su Yixue Chen |
author2Str |
Shichang Liu Ding She Yang Su Yixue Chen |
ppnlink |
63243855X |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.net.2020.07.018 |
callnumber-a |
TK9001-9401 |
up_date |
2024-07-03T22:53:26.106Z |
_version_ |
1803600219195047937 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ051915367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308163342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2020.07.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ051915367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5f1eea49d81947cea273c1c67a3ac7c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function expansion tally</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order selection strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RMC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shichang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ding She</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yixue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">53(2021), 2, Seite 430-438</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:430-438</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2020.07.018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5f1eea49d81947cea273c1c67a3ac7c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573320302370</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="h">430-438</subfield></datafield></record></collection>
|
score |
7.4000845 |