Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus
Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soyb...
Ausführliche Beschreibung
Autor*in: |
Etsushi Kumagai [verfasserIn] Tetsuya Yamada [verfasserIn] Toshihiro Hasegawa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Food and Energy Security - Wiley, 2012, 9(2020), 1, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:1 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/fes3.186 |
---|
Katalog-ID: |
DOAJ052115534 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052115534 | ||
003 | DE-627 | ||
005 | 20230308164210.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/fes3.186 |2 doi | |
035 | |a (DE-627)DOAJ052115534 | ||
035 | |a (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Etsushi Kumagai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. | ||
650 | 4 | |a E4 locus | |
650 | 4 | |a Glycine max | |
650 | 4 | |a high temperature | |
650 | 4 | |a photoperiod sensitivity | |
650 | 4 | |a reproductive development | |
650 | 4 | |a seed yield | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Tetsuya Yamada |e verfasserin |4 aut | |
700 | 0 | |a Toshihiro Hasegawa |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Food and Energy Security |d Wiley, 2012 |g 9(2020), 1, Seite n/a-n/a |w (DE-627)718660528 |w (DE-600)2663354-1 |x 20483694 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:1 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/fes3.186 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/fes3.186 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2048-3694 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 1 |h n/a-n/a |
author_variant |
e k ek t y ty t h th |
---|---|
matchkey_str |
article:20483694:2020----::shyedhneutwrigfetdyhtprosniiiyf |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
S |
publishDate |
2020 |
allfields |
10.1002/fes3.186 doi (DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 DE-627 ger DE-627 rakwb eng S1-972 Etsushi Kumagai verfasserin aut Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) Tetsuya Yamada verfasserin aut Toshihiro Hasegawa verfasserin aut In Food and Energy Security Wiley, 2012 9(2020), 1, Seite n/a-n/a (DE-627)718660528 (DE-600)2663354-1 20483694 nnns volume:9 year:2020 number:1 pages:n/a-n/a https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 kostenfrei https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/toc/2048-3694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 n/a-n/a |
spelling |
10.1002/fes3.186 doi (DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 DE-627 ger DE-627 rakwb eng S1-972 Etsushi Kumagai verfasserin aut Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) Tetsuya Yamada verfasserin aut Toshihiro Hasegawa verfasserin aut In Food and Energy Security Wiley, 2012 9(2020), 1, Seite n/a-n/a (DE-627)718660528 (DE-600)2663354-1 20483694 nnns volume:9 year:2020 number:1 pages:n/a-n/a https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 kostenfrei https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/toc/2048-3694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 n/a-n/a |
allfields_unstemmed |
10.1002/fes3.186 doi (DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 DE-627 ger DE-627 rakwb eng S1-972 Etsushi Kumagai verfasserin aut Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) Tetsuya Yamada verfasserin aut Toshihiro Hasegawa verfasserin aut In Food and Energy Security Wiley, 2012 9(2020), 1, Seite n/a-n/a (DE-627)718660528 (DE-600)2663354-1 20483694 nnns volume:9 year:2020 number:1 pages:n/a-n/a https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 kostenfrei https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/toc/2048-3694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 n/a-n/a |
allfieldsGer |
10.1002/fes3.186 doi (DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 DE-627 ger DE-627 rakwb eng S1-972 Etsushi Kumagai verfasserin aut Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) Tetsuya Yamada verfasserin aut Toshihiro Hasegawa verfasserin aut In Food and Energy Security Wiley, 2012 9(2020), 1, Seite n/a-n/a (DE-627)718660528 (DE-600)2663354-1 20483694 nnns volume:9 year:2020 number:1 pages:n/a-n/a https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 kostenfrei https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/toc/2048-3694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 n/a-n/a |
allfieldsSound |
10.1002/fes3.186 doi (DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 DE-627 ger DE-627 rakwb eng S1-972 Etsushi Kumagai verfasserin aut Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) Tetsuya Yamada verfasserin aut Toshihiro Hasegawa verfasserin aut In Food and Energy Security Wiley, 2012 9(2020), 1, Seite n/a-n/a (DE-627)718660528 (DE-600)2663354-1 20483694 nnns volume:9 year:2020 number:1 pages:n/a-n/a https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 kostenfrei https://doi.org/10.1002/fes3.186 kostenfrei https://doaj.org/toc/2048-3694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 n/a-n/a |
language |
English |
source |
In Food and Energy Security 9(2020), 1, Seite n/a-n/a volume:9 year:2020 number:1 pages:n/a-n/a |
sourceStr |
In Food and Energy Security 9(2020), 1, Seite n/a-n/a volume:9 year:2020 number:1 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield Agriculture S Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Food and Energy Security |
authorswithroles_txt_mv |
Etsushi Kumagai @@aut@@ Tetsuya Yamada @@aut@@ Toshihiro Hasegawa @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718660528 |
id |
DOAJ052115534 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052115534</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308164210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fes3.186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052115534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Etsushi Kumagai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">E4 locus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycine max</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photoperiod sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reproductive development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed yield</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tetsuya Yamada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Food and Energy Security</subfield><subfield code="d">Wiley, 2012</subfield><subfield code="g">9(2020), 1, Seite n/a-n/a</subfield><subfield code="w">(DE-627)718660528</subfield><subfield code="w">(DE-600)2663354-1</subfield><subfield code="x">20483694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fes3.186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fes3.186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2048-3694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Etsushi Kumagai |
spellingShingle |
Etsushi Kumagai misc S1-972 misc E4 locus misc Glycine max misc high temperature misc photoperiod sensitivity misc reproductive development misc seed yield misc Agriculture misc S misc Agriculture (General) Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
authorStr |
Etsushi Kumagai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718660528 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
20483694 |
topic_title |
S1-972 Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus E4 locus Glycine max high temperature photoperiod sensitivity reproductive development seed yield |
topic |
misc S1-972 misc E4 locus misc Glycine max misc high temperature misc photoperiod sensitivity misc reproductive development misc seed yield misc Agriculture misc S misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc E4 locus misc Glycine max misc high temperature misc photoperiod sensitivity misc reproductive development misc seed yield misc Agriculture misc S misc Agriculture (General) |
topic_browse |
misc S1-972 misc E4 locus misc Glycine max misc high temperature misc photoperiod sensitivity misc reproductive development misc seed yield misc Agriculture misc S misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Food and Energy Security |
hierarchy_parent_id |
718660528 |
hierarchy_top_title |
Food and Energy Security |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718660528 (DE-600)2663354-1 |
title |
Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
ctrlnum |
(DE-627)DOAJ052115534 (DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907 |
title_full |
Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
author_sort |
Etsushi Kumagai |
journal |
Food and Energy Security |
journalStr |
Food and Energy Security |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Etsushi Kumagai Tetsuya Yamada Toshihiro Hasegawa |
container_volume |
9 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Etsushi Kumagai |
doi_str_mv |
10.1002/fes3.186 |
author2-role |
verfasserin |
title_sort |
is the yield change due to warming affected by photoperiod sensitivity? effects of the soybean e4 locus |
callnumber |
S1-972 |
title_auth |
Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
abstract |
Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. |
abstractGer |
Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. |
abstract_unstemmed |
Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus |
url |
https://doi.org/10.1002/fes3.186 https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907 https://doaj.org/toc/2048-3694 |
remote_bool |
true |
author2 |
Tetsuya Yamada Toshihiro Hasegawa |
author2Str |
Tetsuya Yamada Toshihiro Hasegawa |
ppnlink |
718660528 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/fes3.186 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T23:47:27.608Z |
_version_ |
1803603618153103360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052115534</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308164210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fes3.186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052115534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ae935f0d43644f6a98efeafc2817907</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Etsushi Kumagai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Modeling studies predict that global warming will shorten growth duration and reduce seed yield of early‐maturing soybean (Glycine max) cultivars, but that late‐maturing cultivars could mitigate this reduction. This is widely discussed but has not been validated experimentally. Time of soybean maturation is determined by several photoperiod‐sensitive loci. Here, we focused on the E4 locus, and tested the hypothesis that this locus would mitigate the growth period shortening and yield reduction due to warming. We sowed cv. Enrei with the dominant E4 allele and a near‐isogenic line with recessive e4 allele (NIL‐e4) on two dates (normal vs. late, with a shorter photoperiod) and grown under three temperature regimes (near‐ambient, and 2.0 and 4.6°C above ambient) in sunlit greenhouses in a cool region of Japan. The period from sowing to flowering (R1) decreased with increasing temperature, regardless of genotype and sowing date. However, increased temperature prolonged the period from R1 to the beginning of pod filling (R3) in Enrei but not in NIL‐e4 for either sowing date. This indicates that increasing temperature shortened the period before R1, exposing Enrei with E4 to a longer photoperiod and therefore slowing its development. For both sowing dates, pod number and seed yield increased with warming in Enrei. Since the days from R1 to R3 and the cumulative radiation for this period were positively correlated with pod number in Enrei, the greater yield response was explained mostly by the prolongation of this period caused by warming. However, the yield increase resulted partially from the current mean growing season temperature, which was near or below the optimum for yield. We conclude that the E4 locus can increase seed yield under future warming in cool regions of Japan. This result demonstrates the potential importance of modifying photoperiod sensitivity to increase soybean yield under future warming.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">E4 locus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycine max</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photoperiod sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reproductive development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed yield</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tetsuya Yamada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Food and Energy Security</subfield><subfield code="d">Wiley, 2012</subfield><subfield code="g">9(2020), 1, Seite n/a-n/a</subfield><subfield code="w">(DE-627)718660528</subfield><subfield code="w">(DE-600)2663354-1</subfield><subfield code="x">20483694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fes3.186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ae935f0d43644f6a98efeafc2817907</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fes3.186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2048-3694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4017506 |