Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research
Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, wi...
Ausführliche Beschreibung
Autor*in: |
Claudia Sauerschnig [verfasserIn] Maria Doppler [verfasserIn] Christoph Bueschl [verfasserIn] Rainer Schuhmacher [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metabolites - MDPI AG, 2012, 8(2017), 1, p 1 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2017 ; number:1, p 1 |
Links: |
---|
DOI / URN: |
10.3390/metabo8010001 |
---|
Katalog-ID: |
DOAJ052141594 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052141594 | ||
003 | DE-627 | ||
005 | 20230308164306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/metabo8010001 |2 doi | |
035 | |a (DE-627)DOAJ052141594 | ||
035 | |a (DE-599)DOAJe184826cd2ea4d64a842abc991532253 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Claudia Sauerschnig |e verfasserin |4 aut | |
245 | 1 | 0 | |a Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. | ||
650 | 4 | |a untargeted metabolomics | |
650 | 4 | |a stable isotopic labeling (SIL) | |
650 | 4 | |a acidification | |
650 | 4 | |a sample storage | |
650 | 4 | |a plant metabolomics | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Maria Doppler |e verfasserin |4 aut | |
700 | 0 | |a Christoph Bueschl |e verfasserin |4 aut | |
700 | 0 | |a Rainer Schuhmacher |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metabolites |d MDPI AG, 2012 |g 8(2017), 1, p 1 |w (DE-627)718627164 |w (DE-600)2662251-8 |x 22181989 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2017 |g number:1, p 1 |
856 | 4 | 0 | |u https://doi.org/10.3390/metabo8010001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e184826cd2ea4d64a842abc991532253 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1989/8/1/1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1989 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2017 |e 1, p 1 |
author_variant |
c s cs m d md c b cb r s rs |
---|---|
matchkey_str |
article:22181989:2017----::ehnleeaenmruatfcsuigapexrcinnsoaefxr |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QR |
publishDate |
2017 |
allfields |
10.3390/metabo8010001 doi (DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 DE-627 ger DE-627 rakwb eng QR1-502 Claudia Sauerschnig verfasserin aut Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology Maria Doppler verfasserin aut Christoph Bueschl verfasserin aut Rainer Schuhmacher verfasserin aut In Metabolites MDPI AG, 2012 8(2017), 1, p 1 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:8 year:2017 number:1, p 1 https://doi.org/10.3390/metabo8010001 kostenfrei https://doaj.org/article/e184826cd2ea4d64a842abc991532253 kostenfrei https://www.mdpi.com/2218-1989/8/1/1 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1, p 1 |
spelling |
10.3390/metabo8010001 doi (DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 DE-627 ger DE-627 rakwb eng QR1-502 Claudia Sauerschnig verfasserin aut Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology Maria Doppler verfasserin aut Christoph Bueschl verfasserin aut Rainer Schuhmacher verfasserin aut In Metabolites MDPI AG, 2012 8(2017), 1, p 1 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:8 year:2017 number:1, p 1 https://doi.org/10.3390/metabo8010001 kostenfrei https://doaj.org/article/e184826cd2ea4d64a842abc991532253 kostenfrei https://www.mdpi.com/2218-1989/8/1/1 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1, p 1 |
allfields_unstemmed |
10.3390/metabo8010001 doi (DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 DE-627 ger DE-627 rakwb eng QR1-502 Claudia Sauerschnig verfasserin aut Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology Maria Doppler verfasserin aut Christoph Bueschl verfasserin aut Rainer Schuhmacher verfasserin aut In Metabolites MDPI AG, 2012 8(2017), 1, p 1 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:8 year:2017 number:1, p 1 https://doi.org/10.3390/metabo8010001 kostenfrei https://doaj.org/article/e184826cd2ea4d64a842abc991532253 kostenfrei https://www.mdpi.com/2218-1989/8/1/1 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1, p 1 |
allfieldsGer |
10.3390/metabo8010001 doi (DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 DE-627 ger DE-627 rakwb eng QR1-502 Claudia Sauerschnig verfasserin aut Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology Maria Doppler verfasserin aut Christoph Bueschl verfasserin aut Rainer Schuhmacher verfasserin aut In Metabolites MDPI AG, 2012 8(2017), 1, p 1 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:8 year:2017 number:1, p 1 https://doi.org/10.3390/metabo8010001 kostenfrei https://doaj.org/article/e184826cd2ea4d64a842abc991532253 kostenfrei https://www.mdpi.com/2218-1989/8/1/1 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1, p 1 |
allfieldsSound |
10.3390/metabo8010001 doi (DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 DE-627 ger DE-627 rakwb eng QR1-502 Claudia Sauerschnig verfasserin aut Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology Maria Doppler verfasserin aut Christoph Bueschl verfasserin aut Rainer Schuhmacher verfasserin aut In Metabolites MDPI AG, 2012 8(2017), 1, p 1 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:8 year:2017 number:1, p 1 https://doi.org/10.3390/metabo8010001 kostenfrei https://doaj.org/article/e184826cd2ea4d64a842abc991532253 kostenfrei https://www.mdpi.com/2218-1989/8/1/1 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1, p 1 |
language |
English |
source |
In Metabolites 8(2017), 1, p 1 volume:8 year:2017 number:1, p 1 |
sourceStr |
In Metabolites 8(2017), 1, p 1 volume:8 year:2017 number:1, p 1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics Microbiology |
isfreeaccess_bool |
true |
container_title |
Metabolites |
authorswithroles_txt_mv |
Claudia Sauerschnig @@aut@@ Maria Doppler @@aut@@ Christoph Bueschl @@aut@@ Rainer Schuhmacher @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
718627164 |
id |
DOAJ052141594 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052141594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308164306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo8010001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052141594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe184826cd2ea4d64a842abc991532253</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Claudia Sauerschnig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the &gt;1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stable isotopic labeling (SIL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acidification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant metabolomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Doppler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph Bueschl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rainer Schuhmacher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2017), 1, p 1</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1, p 1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo8010001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e184826cd2ea4d64a842abc991532253</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/8/1/1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2017</subfield><subfield code="e">1, p 1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Claudia Sauerschnig |
spellingShingle |
Claudia Sauerschnig misc QR1-502 misc untargeted metabolomics misc stable isotopic labeling (SIL) misc acidification misc sample storage misc plant metabolomics misc Microbiology Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
authorStr |
Claudia Sauerschnig |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627164 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
22181989 |
topic_title |
QR1-502 Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research untargeted metabolomics stable isotopic labeling (SIL) acidification sample storage plant metabolomics |
topic |
misc QR1-502 misc untargeted metabolomics misc stable isotopic labeling (SIL) misc acidification misc sample storage misc plant metabolomics misc Microbiology |
topic_unstemmed |
misc QR1-502 misc untargeted metabolomics misc stable isotopic labeling (SIL) misc acidification misc sample storage misc plant metabolomics misc Microbiology |
topic_browse |
misc QR1-502 misc untargeted metabolomics misc stable isotopic labeling (SIL) misc acidification misc sample storage misc plant metabolomics misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metabolites |
hierarchy_parent_id |
718627164 |
hierarchy_top_title |
Metabolites |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627164 (DE-600)2662251-8 |
title |
Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
ctrlnum |
(DE-627)DOAJ052141594 (DE-599)DOAJe184826cd2ea4d64a842abc991532253 |
title_full |
Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
author_sort |
Claudia Sauerschnig |
journal |
Metabolites |
journalStr |
Metabolites |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Claudia Sauerschnig Maria Doppler Christoph Bueschl Rainer Schuhmacher |
container_volume |
8 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Claudia Sauerschnig |
doi_str_mv |
10.3390/metabo8010001 |
author2-role |
verfasserin |
title_sort |
methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research |
callnumber |
QR1-502 |
title_auth |
Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
abstract |
Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. |
abstractGer |
Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. |
abstract_unstemmed |
Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 1 |
title_short |
Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research |
url |
https://doi.org/10.3390/metabo8010001 https://doaj.org/article/e184826cd2ea4d64a842abc991532253 https://www.mdpi.com/2218-1989/8/1/1 https://doaj.org/toc/2218-1989 |
remote_bool |
true |
author2 |
Maria Doppler Christoph Bueschl Rainer Schuhmacher |
author2Str |
Maria Doppler Christoph Bueschl Rainer Schuhmacher |
ppnlink |
718627164 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/metabo8010001 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T23:53:53.686Z |
_version_ |
1803604022985228288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052141594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308164306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo8010001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052141594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe184826cd2ea4d64a842abc991532253</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Claudia Sauerschnig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the &gt;1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">untargeted metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stable isotopic labeling (SIL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acidification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant metabolomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Doppler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph Bueschl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rainer Schuhmacher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2017), 1, p 1</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1, p 1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo8010001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e184826cd2ea4d64a842abc991532253</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/8/1/1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2017</subfield><subfield code="e">1, p 1</subfield></datafield></record></collection>
|
score |
7.4009123 |