Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry
Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon is...
Ausführliche Beschreibung
Autor*in: |
Baoming Du [verfasserIn] Ji Zheng [verfasserIn] Huawei Ji [verfasserIn] Yanhua Zhu [verfasserIn] Jun Yuan [verfasserIn] Jiahao Wen [verfasserIn] Hongzhang Kang [verfasserIn] Chunjiang Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 121(2021), Seite 107250- |
---|---|
Übergeordnetes Werk: |
volume:121 ; year:2021 ; pages:107250- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2020.107250 |
---|
Katalog-ID: |
DOAJ052425142 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052425142 | ||
003 | DE-627 | ||
005 | 20230308165312.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2020.107250 |2 doi | |
035 | |a (DE-627)DOAJ052425142 | ||
035 | |a (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Baoming Du |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. | ||
650 | 4 | |a Seasonal stoichiometry | |
650 | 4 | |a Water use efficiency | |
650 | 4 | |a Carbon isotope composition | |
650 | 4 | |a Nutrient limitation | |
650 | 4 | |a Quercus variabilis | |
653 | 0 | |a Ecology | |
700 | 0 | |a Ji Zheng |e verfasserin |4 aut | |
700 | 0 | |a Huawei Ji |e verfasserin |4 aut | |
700 | 0 | |a Yanhua Zhu |e verfasserin |4 aut | |
700 | 0 | |a Jun Yuan |e verfasserin |4 aut | |
700 | 0 | |a Jiahao Wen |e verfasserin |4 aut | |
700 | 0 | |a Hongzhang Kang |e verfasserin |4 aut | |
700 | 0 | |a Chunjiang Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 121(2021), Seite 107250- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:121 |g year:2021 |g pages:107250- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2020.107250 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X20311894 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 121 |j 2021 |h 107250- |
author_variant |
b d bd j z jz h j hj y z yz j y jy j w jw h k hk c l cl |
---|---|
matchkey_str |
article:18727034:2021----::tbeabnstpuetetmtwtrsefceccnfetvlidctsaoa |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.1016/j.ecolind.2020.107250 doi (DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b DE-627 ger DE-627 rakwb eng QH540-549.5 Baoming Du verfasserin aut Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology Ji Zheng verfasserin aut Huawei Ji verfasserin aut Yanhua Zhu verfasserin aut Jun Yuan verfasserin aut Jiahao Wen verfasserin aut Hongzhang Kang verfasserin aut Chunjiang Liu verfasserin aut In Ecological Indicators Elsevier, 2021 121(2021), Seite 107250- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:121 year:2021 pages:107250- https://doi.org/10.1016/j.ecolind.2020.107250 kostenfrei https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X20311894 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 121 2021 107250- |
spelling |
10.1016/j.ecolind.2020.107250 doi (DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b DE-627 ger DE-627 rakwb eng QH540-549.5 Baoming Du verfasserin aut Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology Ji Zheng verfasserin aut Huawei Ji verfasserin aut Yanhua Zhu verfasserin aut Jun Yuan verfasserin aut Jiahao Wen verfasserin aut Hongzhang Kang verfasserin aut Chunjiang Liu verfasserin aut In Ecological Indicators Elsevier, 2021 121(2021), Seite 107250- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:121 year:2021 pages:107250- https://doi.org/10.1016/j.ecolind.2020.107250 kostenfrei https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X20311894 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 121 2021 107250- |
allfields_unstemmed |
10.1016/j.ecolind.2020.107250 doi (DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b DE-627 ger DE-627 rakwb eng QH540-549.5 Baoming Du verfasserin aut Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology Ji Zheng verfasserin aut Huawei Ji verfasserin aut Yanhua Zhu verfasserin aut Jun Yuan verfasserin aut Jiahao Wen verfasserin aut Hongzhang Kang verfasserin aut Chunjiang Liu verfasserin aut In Ecological Indicators Elsevier, 2021 121(2021), Seite 107250- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:121 year:2021 pages:107250- https://doi.org/10.1016/j.ecolind.2020.107250 kostenfrei https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X20311894 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 121 2021 107250- |
allfieldsGer |
10.1016/j.ecolind.2020.107250 doi (DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b DE-627 ger DE-627 rakwb eng QH540-549.5 Baoming Du verfasserin aut Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology Ji Zheng verfasserin aut Huawei Ji verfasserin aut Yanhua Zhu verfasserin aut Jun Yuan verfasserin aut Jiahao Wen verfasserin aut Hongzhang Kang verfasserin aut Chunjiang Liu verfasserin aut In Ecological Indicators Elsevier, 2021 121(2021), Seite 107250- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:121 year:2021 pages:107250- https://doi.org/10.1016/j.ecolind.2020.107250 kostenfrei https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X20311894 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 121 2021 107250- |
allfieldsSound |
10.1016/j.ecolind.2020.107250 doi (DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b DE-627 ger DE-627 rakwb eng QH540-549.5 Baoming Du verfasserin aut Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology Ji Zheng verfasserin aut Huawei Ji verfasserin aut Yanhua Zhu verfasserin aut Jun Yuan verfasserin aut Jiahao Wen verfasserin aut Hongzhang Kang verfasserin aut Chunjiang Liu verfasserin aut In Ecological Indicators Elsevier, 2021 121(2021), Seite 107250- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:121 year:2021 pages:107250- https://doi.org/10.1016/j.ecolind.2020.107250 kostenfrei https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X20311894 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 121 2021 107250- |
language |
English |
source |
In Ecological Indicators 121(2021), Seite 107250- volume:121 year:2021 pages:107250- |
sourceStr |
In Ecological Indicators 121(2021), Seite 107250- volume:121 year:2021 pages:107250- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Baoming Du @@aut@@ Ji Zheng @@aut@@ Huawei Ji @@aut@@ Yanhua Zhu @@aut@@ Jun Yuan @@aut@@ Jiahao Wen @@aut@@ Hongzhang Kang @@aut@@ Chunjiang Liu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ052425142 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052425142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308165312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2020.107250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052425142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2896a92462f415b9e56b4ff703e712b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baoming Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seasonal stoichiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water use efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon isotope composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient limitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quercus variabilis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huawei Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanhua Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongzhang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunjiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">121(2021), Seite 107250-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107250-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2020.107250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X20311894</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2021</subfield><subfield code="h">107250-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Baoming Du |
spellingShingle |
Baoming Du misc QH540-549.5 misc Seasonal stoichiometry misc Water use efficiency misc Carbon isotope composition misc Nutrient limitation misc Quercus variabilis misc Ecology Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
authorStr |
Baoming Du |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry Seasonal stoichiometry Water use efficiency Carbon isotope composition Nutrient limitation Quercus variabilis |
topic |
misc QH540-549.5 misc Seasonal stoichiometry misc Water use efficiency misc Carbon isotope composition misc Nutrient limitation misc Quercus variabilis misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc Seasonal stoichiometry misc Water use efficiency misc Carbon isotope composition misc Nutrient limitation misc Quercus variabilis misc Ecology |
topic_browse |
misc QH540-549.5 misc Seasonal stoichiometry misc Water use efficiency misc Carbon isotope composition misc Nutrient limitation misc Quercus variabilis misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
ctrlnum |
(DE-627)DOAJ052425142 (DE-599)DOAJa2896a92462f415b9e56b4ff703e712b |
title_full |
Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
author_sort |
Baoming Du |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
107250 |
author_browse |
Baoming Du Ji Zheng Huawei Ji Yanhua Zhu Jun Yuan Jiahao Wen Hongzhang Kang Chunjiang Liu |
container_volume |
121 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Baoming Du |
doi_str_mv |
10.1016/j.ecolind.2020.107250 |
author2-role |
verfasserin |
title_sort |
stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
callnumber |
QH540-549.5 |
title_auth |
Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
abstract |
Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. |
abstractGer |
Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. |
abstract_unstemmed |
Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry |
url |
https://doi.org/10.1016/j.ecolind.2020.107250 https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b http://www.sciencedirect.com/science/article/pii/S1470160X20311894 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Ji Zheng Huawei Ji Yanhua Zhu Jun Yuan Jiahao Wen Hongzhang Kang Chunjiang Liu |
author2Str |
Ji Zheng Huawei Ji Yanhua Zhu Jun Yuan Jiahao Wen Hongzhang Kang Chunjiang Liu |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2020.107250 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-04T01:00:50.450Z |
_version_ |
1803608234867556352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052425142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308165312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2020.107250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052425142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2896a92462f415b9e56b4ff703e712b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baoming Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimates of seasonal variation in plant stoichiometry and water use efficiency (WUE) are critical for predicting the time courses of carbon and water fluxes. However, the relationship between seasonal stoichiometry and WUE, and their relationship with climatic factors remains unclear. The carbon isotope composition has been widely used to evaluate the WUE. We hypothesized that WUE is closely related to seasonal variation in plant stoichiometry, and then stable carbon isotope can be used to indicate the variation in future models. For this study, we investigated seasonal changes in WUE and 14 elements (C, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, Zn, Cu, and Ba) of Quercus variabilis in a warm temperate forest, Central China. The WUE gradually reduced from late spring until leaf senescence in fall. Leaf C and N initially increased and then decreased. Leaf P, S, and K generally decreased, whereas Ca, Ba, Al and Fe gradually accumulated throughout the growing season. Leaf C:N, C:P, and N:P were lowest in early season, and then typically increased. As expected, WUE was positively correlated with N, P, S, K, and Mg, while negatively with C, Ca, Al, and Fe as well as C:N, C:P, and N:P. WUE increased with higher temperatures but had no relationship with precipitation. Leaf N, P, S, and K increased, while C:N, C:P, and N:P decreased with higher temperatures. Our results suggested that seasonal stoichiometry and WUE was closely coupled with plant growth, and temperature may be the main dynamic driver of water and nutrients in forest ecosystems. As WUE was estimated by carbon isotope composition, our findings provide new insights toward integrating carbon isotope with Earth system models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seasonal stoichiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water use efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon isotope composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient limitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quercus variabilis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huawei Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanhua Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongzhang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunjiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">121(2021), Seite 107250-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107250-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2020.107250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2896a92462f415b9e56b4ff703e712b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X20311894</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2021</subfield><subfield code="h">107250-</subfield></datafield></record></collection>
|
score |
7.399847 |