PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach
Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this p...
Ausführliche Beschreibung
Autor*in: |
Mingxin Wang [verfasserIn] Huachun Zhou [verfasserIn] Jia Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 59253-59267 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:59253-59267 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2875164 |
---|
Katalog-ID: |
DOAJ052515699 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052515699 | ||
003 | DE-627 | ||
005 | 20230308165645.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2875164 |2 doi | |
035 | |a (DE-627)DOAJ052515699 | ||
035 | |a (DE-599)DOAJ15342155427e427abc9786a9cd61c072 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Mingxin Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. | ||
650 | 4 | |a Flooding attack | |
650 | 4 | |a popularity | |
650 | 4 | |a software-defined networking | |
650 | 4 | |a network security | |
650 | 4 | |a timeout analysis | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Huachun Zhou |e verfasserin |4 aut | |
700 | 0 | |a Jia Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 59253-59267 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:59253-59267 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2875164 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/15342155427e427abc9786a9cd61c072 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8488536/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 59253-59267 |
author_variant |
m w mw h z hz j c jc |
---|---|
matchkey_str |
article:21693536:2018----::oiaouaiyntmotnlssaesnotol |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2875164 doi (DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 DE-627 ger DE-627 rakwb eng TK1-9971 Mingxin Wang verfasserin aut PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering Huachun Zhou verfasserin aut Jia Chen verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 59253-59267 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:59253-59267 https://doi.org/10.1109/ACCESS.2018.2875164 kostenfrei https://doaj.org/article/15342155427e427abc9786a9cd61c072 kostenfrei https://ieeexplore.ieee.org/document/8488536/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 59253-59267 |
spelling |
10.1109/ACCESS.2018.2875164 doi (DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 DE-627 ger DE-627 rakwb eng TK1-9971 Mingxin Wang verfasserin aut PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering Huachun Zhou verfasserin aut Jia Chen verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 59253-59267 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:59253-59267 https://doi.org/10.1109/ACCESS.2018.2875164 kostenfrei https://doaj.org/article/15342155427e427abc9786a9cd61c072 kostenfrei https://ieeexplore.ieee.org/document/8488536/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 59253-59267 |
allfields_unstemmed |
10.1109/ACCESS.2018.2875164 doi (DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 DE-627 ger DE-627 rakwb eng TK1-9971 Mingxin Wang verfasserin aut PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering Huachun Zhou verfasserin aut Jia Chen verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 59253-59267 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:59253-59267 https://doi.org/10.1109/ACCESS.2018.2875164 kostenfrei https://doaj.org/article/15342155427e427abc9786a9cd61c072 kostenfrei https://ieeexplore.ieee.org/document/8488536/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 59253-59267 |
allfieldsGer |
10.1109/ACCESS.2018.2875164 doi (DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 DE-627 ger DE-627 rakwb eng TK1-9971 Mingxin Wang verfasserin aut PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering Huachun Zhou verfasserin aut Jia Chen verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 59253-59267 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:59253-59267 https://doi.org/10.1109/ACCESS.2018.2875164 kostenfrei https://doaj.org/article/15342155427e427abc9786a9cd61c072 kostenfrei https://ieeexplore.ieee.org/document/8488536/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 59253-59267 |
allfieldsSound |
10.1109/ACCESS.2018.2875164 doi (DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 DE-627 ger DE-627 rakwb eng TK1-9971 Mingxin Wang verfasserin aut PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering Huachun Zhou verfasserin aut Jia Chen verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 59253-59267 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:59253-59267 https://doi.org/10.1109/ACCESS.2018.2875164 kostenfrei https://doaj.org/article/15342155427e427abc9786a9cd61c072 kostenfrei https://ieeexplore.ieee.org/document/8488536/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 59253-59267 |
language |
English |
source |
In IEEE Access 6(2018), Seite 59253-59267 volume:6 year:2018 pages:59253-59267 |
sourceStr |
In IEEE Access 6(2018), Seite 59253-59267 volume:6 year:2018 pages:59253-59267 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flooding attack popularity software-defined networking network security timeout analysis Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Mingxin Wang @@aut@@ Huachun Zhou @@aut@@ Jia Chen @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ052515699 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052515699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308165645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2875164</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052515699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15342155427e427abc9786a9cd61c072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingxin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flooding attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">popularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software-defined networking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">timeout analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huachun Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 59253-59267</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:59253-59267</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2875164</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15342155427e427abc9786a9cd61c072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8488536/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">59253-59267</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mingxin Wang |
spellingShingle |
Mingxin Wang misc TK1-9971 misc Flooding attack misc popularity misc software-defined networking misc network security misc timeout analysis misc Electrical engineering. Electronics. Nuclear engineering PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
authorStr |
Mingxin Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach Flooding attack popularity software-defined networking network security timeout analysis |
topic |
misc TK1-9971 misc Flooding attack misc popularity misc software-defined networking misc network security misc timeout analysis misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Flooding attack misc popularity misc software-defined networking misc network security misc timeout analysis misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Flooding attack misc popularity misc software-defined networking misc network security misc timeout analysis misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
ctrlnum |
(DE-627)DOAJ052515699 (DE-599)DOAJ15342155427e427abc9786a9cd61c072 |
title_full |
PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
author_sort |
Mingxin Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
59253 |
author_browse |
Mingxin Wang Huachun Zhou Jia Chen |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Mingxin Wang |
doi_str_mv |
10.1109/ACCESS.2018.2875164 |
author2-role |
verfasserin |
title_sort |
potia: a popularity and timeout analysis based sdn controller protection approach |
callnumber |
TK1-9971 |
title_auth |
PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
abstract |
Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. |
abstractGer |
Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. |
abstract_unstemmed |
Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach |
url |
https://doi.org/10.1109/ACCESS.2018.2875164 https://doaj.org/article/15342155427e427abc9786a9cd61c072 https://ieeexplore.ieee.org/document/8488536/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Huachun Zhou Jia Chen |
author2Str |
Huachun Zhou Jia Chen |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2875164 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:21:27.642Z |
_version_ |
1803609532156346368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052515699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308165645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2875164</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052515699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15342155427e427abc9786a9cd61c072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingxin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PoTiA: A Popularity and Timeout Analysis Based SDN Controller Protection Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Software-defined networking (SDN) is a novel and promising network architecture, which decouples the controlling function from the forwarding plane. SDN provides the flexibility to program the network through centralized control. However, security issues of SDN should arouse our attention. In this paper, we mainly discuss a specific vulnerability of the centralized control mechanism in SDN, which is likely to suffer denial-of-service (DoS) flooding attack. We propose a popularity and timeout analysis-based controller protection approach to protect the controller from the flooding attack. We develop a controller protection application on the SDN controller in which a popularity table is maintained. When the arriving rate of the packets to the controller exceeds the pre-defined threshold, the selected proactive flow table entries will be installed on the data plane switches to ensure that the requests to the most popular destination addresses can be served with higher priority. Furthermore, we mitigate the unpopular requests to a low priority queue, which can send Packet_In requests to the controller with rate limiting. The timeout analysis module in the application can identify the malicious host by analyzing the lifetime of the flows according to the flow-removed messages. Blocking entries will be added to the blacklist table on the switch. Our controller protection approach can effectively alleviate the impact of the SDN controller-oriented flooding attack. The detection rate is 99.90%, and the false alarm rate is 0.41%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flooding attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">popularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software-defined networking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">timeout analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huachun Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 59253-59267</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:59253-59267</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2875164</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15342155427e427abc9786a9cd61c072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8488536/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">59253-59267</subfield></datafield></record></collection>
|
score |
7.3993473 |