Automatic Food Intake Monitoring Based on Chewing Activity: A Survey
Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food mo...
Ausführliche Beschreibung
Autor*in: |
Nur Asmiza Selamat [verfasserIn] Sawal Hamid Md. Ali [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 48846-48869 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:48846-48869 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2978260 |
---|
Katalog-ID: |
DOAJ052532593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052532593 | ||
003 | DE-627 | ||
005 | 20230503143936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2978260 |2 doi | |
035 | |a (DE-627)DOAJ052532593 | ||
035 | |a (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Nur Asmiza Selamat |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. | ||
650 | 4 | |a Food intake monitoring | |
650 | 4 | |a automatic food intake detection | |
650 | 4 | |a chewing sensor | |
650 | 4 | |a chewing detection | |
650 | 4 | |a chewing classification | |
650 | 4 | |a chewing count | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Sawal Hamid Md. Ali |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 48846-48869 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:48846-48869 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2978260 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9024026/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 48846-48869 |
author_variant |
n a s nas s h m a shma |
---|---|
matchkey_str |
article:21693536:2020----::uoaifoitkmntrnbsdnhwn |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2978260 doi (DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 DE-627 ger DE-627 rakwb eng TK1-9971 Nur Asmiza Selamat verfasserin aut Automatic Food Intake Monitoring Based on Chewing Activity: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering Sawal Hamid Md. Ali verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 48846-48869 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:48846-48869 https://doi.org/10.1109/ACCESS.2020.2978260 kostenfrei https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 kostenfrei https://ieeexplore.ieee.org/document/9024026/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 48846-48869 |
spelling |
10.1109/ACCESS.2020.2978260 doi (DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 DE-627 ger DE-627 rakwb eng TK1-9971 Nur Asmiza Selamat verfasserin aut Automatic Food Intake Monitoring Based on Chewing Activity: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering Sawal Hamid Md. Ali verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 48846-48869 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:48846-48869 https://doi.org/10.1109/ACCESS.2020.2978260 kostenfrei https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 kostenfrei https://ieeexplore.ieee.org/document/9024026/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 48846-48869 |
allfields_unstemmed |
10.1109/ACCESS.2020.2978260 doi (DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 DE-627 ger DE-627 rakwb eng TK1-9971 Nur Asmiza Selamat verfasserin aut Automatic Food Intake Monitoring Based on Chewing Activity: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering Sawal Hamid Md. Ali verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 48846-48869 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:48846-48869 https://doi.org/10.1109/ACCESS.2020.2978260 kostenfrei https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 kostenfrei https://ieeexplore.ieee.org/document/9024026/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 48846-48869 |
allfieldsGer |
10.1109/ACCESS.2020.2978260 doi (DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 DE-627 ger DE-627 rakwb eng TK1-9971 Nur Asmiza Selamat verfasserin aut Automatic Food Intake Monitoring Based on Chewing Activity: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering Sawal Hamid Md. Ali verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 48846-48869 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:48846-48869 https://doi.org/10.1109/ACCESS.2020.2978260 kostenfrei https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 kostenfrei https://ieeexplore.ieee.org/document/9024026/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 48846-48869 |
allfieldsSound |
10.1109/ACCESS.2020.2978260 doi (DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 DE-627 ger DE-627 rakwb eng TK1-9971 Nur Asmiza Selamat verfasserin aut Automatic Food Intake Monitoring Based on Chewing Activity: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering Sawal Hamid Md. Ali verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 48846-48869 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:48846-48869 https://doi.org/10.1109/ACCESS.2020.2978260 kostenfrei https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 kostenfrei https://ieeexplore.ieee.org/document/9024026/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 48846-48869 |
language |
English |
source |
In IEEE Access 8(2020), Seite 48846-48869 volume:8 year:2020 pages:48846-48869 |
sourceStr |
In IEEE Access 8(2020), Seite 48846-48869 volume:8 year:2020 pages:48846-48869 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Nur Asmiza Selamat @@aut@@ Sawal Hamid Md. Ali @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ052532593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052532593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2978260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052532593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nur Asmiza Selamat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic Food Intake Monitoring Based on Chewing Activity: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food intake monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic food intake detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing count</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sawal Hamid Md. Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 48846-48869</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:48846-48869</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2978260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9024026/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">48846-48869</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nur Asmiza Selamat |
spellingShingle |
Nur Asmiza Selamat misc TK1-9971 misc Food intake monitoring misc automatic food intake detection misc chewing sensor misc chewing detection misc chewing classification misc chewing count misc Electrical engineering. Electronics. Nuclear engineering Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
authorStr |
Nur Asmiza Selamat |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Automatic Food Intake Monitoring Based on Chewing Activity: A Survey Food intake monitoring automatic food intake detection chewing sensor chewing detection chewing classification chewing count |
topic |
misc TK1-9971 misc Food intake monitoring misc automatic food intake detection misc chewing sensor misc chewing detection misc chewing classification misc chewing count misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Food intake monitoring misc automatic food intake detection misc chewing sensor misc chewing detection misc chewing classification misc chewing count misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Food intake monitoring misc automatic food intake detection misc chewing sensor misc chewing detection misc chewing classification misc chewing count misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
ctrlnum |
(DE-627)DOAJ052532593 (DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1 |
title_full |
Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
author_sort |
Nur Asmiza Selamat |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
48846 |
author_browse |
Nur Asmiza Selamat Sawal Hamid Md. Ali |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Nur Asmiza Selamat |
doi_str_mv |
10.1109/ACCESS.2020.2978260 |
author2-role |
verfasserin |
title_sort |
automatic food intake monitoring based on chewing activity: a survey |
callnumber |
TK1-9971 |
title_auth |
Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
abstract |
Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. |
abstractGer |
Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. |
abstract_unstemmed |
Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them.. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Automatic Food Intake Monitoring Based on Chewing Activity: A Survey |
url |
https://doi.org/10.1109/ACCESS.2020.2978260 https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1 https://ieeexplore.ieee.org/document/9024026/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Sawal Hamid Md. Ali |
author2Str |
Sawal Hamid Md. Ali |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2978260 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:25:18.503Z |
_version_ |
1803609774234796032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052532593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2978260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052532593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1cc225a42919404ab47d19943cd37cb1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nur Asmiza Selamat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic Food Intake Monitoring Based on Chewing Activity: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Good nutrition is essential for optimal growth, development, and prevention of disease. Due to the importance of nutrition in human life, researchers have been interested in understanding the science of assessing food intake episodes for decades. With the advancement of technology, automated food monitoring tool develops with the help of sensors to address issues related to self-reporting methods. Food monitoring technology is evolving rapidly due to the advancement of sensors; however, automatic monitoring of food intake remains open problems to be solved. For food intake episode detection and monitoring, the sensors used to detect bites, chew, swallow, and hand gestures movement. This survey will be focusing on chewing activity detection during eating episodes. In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data analysis as well as the challenges and limitations associated with them..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food intake monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic food intake detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chewing count</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sawal Hamid Md. Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 48846-48869</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:48846-48869</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2978260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1cc225a42919404ab47d19943cd37cb1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9024026/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">48846-48869</subfield></datafield></record></collection>
|
score |
7.401102 |