Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing
A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are use...
Ausführliche Beschreibung
Autor*in: |
Wenjie Chen [verfasserIn] Junfeng Jiang [verfasserIn] Kun Liu [verfasserIn] Shuang Wang [verfasserIn] Zhe Ma [verfasserIn] Zhenyang Ding [verfasserIn] Tianhua Xu [verfasserIn] Tiegen Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 85395-85400 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:85395-85400 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2992077 |
---|
Katalog-ID: |
DOAJ052751201 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052751201 | ||
003 | DE-627 | ||
005 | 20230308170750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2992077 |2 doi | |
035 | |a (DE-627)DOAJ052751201 | ||
035 | |a (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Wenjie Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. | ||
650 | 4 | |a Optical fiber sensors | |
650 | 4 | |a optical pulses | |
650 | 4 | |a interference | |
650 | 4 | |a phase detection | |
650 | 4 | |a coherent OTDR | |
650 | 4 | |a distributed sensing | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Junfeng Jiang |e verfasserin |4 aut | |
700 | 0 | |a Kun Liu |e verfasserin |4 aut | |
700 | 0 | |a Shuang Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhe Ma |e verfasserin |4 aut | |
700 | 0 | |a Zhenyang Ding |e verfasserin |4 aut | |
700 | 0 | |a Tianhua Xu |e verfasserin |4 aut | |
700 | 0 | |a Tiegen Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 85395-85400 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:85395-85400 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2992077 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9085374/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 85395-85400 |
author_variant |
w c wc j j jj k l kl s w sw z m zm z d zd t x tx t l tl |
---|---|
matchkey_str |
article:21693536:2020----::oeettrsnfeilaliiaotooapaeoeusf |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2992077 doi (DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 DE-627 ger DE-627 rakwb eng TK1-9971 Wenjie Chen verfasserin aut Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering Junfeng Jiang verfasserin aut Kun Liu verfasserin aut Shuang Wang verfasserin aut Zhe Ma verfasserin aut Zhenyang Ding verfasserin aut Tianhua Xu verfasserin aut Tiegen Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 85395-85400 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:85395-85400 https://doi.org/10.1109/ACCESS.2020.2992077 kostenfrei https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 kostenfrei https://ieeexplore.ieee.org/document/9085374/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 85395-85400 |
spelling |
10.1109/ACCESS.2020.2992077 doi (DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 DE-627 ger DE-627 rakwb eng TK1-9971 Wenjie Chen verfasserin aut Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering Junfeng Jiang verfasserin aut Kun Liu verfasserin aut Shuang Wang verfasserin aut Zhe Ma verfasserin aut Zhenyang Ding verfasserin aut Tianhua Xu verfasserin aut Tiegen Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 85395-85400 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:85395-85400 https://doi.org/10.1109/ACCESS.2020.2992077 kostenfrei https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 kostenfrei https://ieeexplore.ieee.org/document/9085374/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 85395-85400 |
allfields_unstemmed |
10.1109/ACCESS.2020.2992077 doi (DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 DE-627 ger DE-627 rakwb eng TK1-9971 Wenjie Chen verfasserin aut Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering Junfeng Jiang verfasserin aut Kun Liu verfasserin aut Shuang Wang verfasserin aut Zhe Ma verfasserin aut Zhenyang Ding verfasserin aut Tianhua Xu verfasserin aut Tiegen Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 85395-85400 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:85395-85400 https://doi.org/10.1109/ACCESS.2020.2992077 kostenfrei https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 kostenfrei https://ieeexplore.ieee.org/document/9085374/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 85395-85400 |
allfieldsGer |
10.1109/ACCESS.2020.2992077 doi (DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 DE-627 ger DE-627 rakwb eng TK1-9971 Wenjie Chen verfasserin aut Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering Junfeng Jiang verfasserin aut Kun Liu verfasserin aut Shuang Wang verfasserin aut Zhe Ma verfasserin aut Zhenyang Ding verfasserin aut Tianhua Xu verfasserin aut Tiegen Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 85395-85400 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:85395-85400 https://doi.org/10.1109/ACCESS.2020.2992077 kostenfrei https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 kostenfrei https://ieeexplore.ieee.org/document/9085374/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 85395-85400 |
allfieldsSound |
10.1109/ACCESS.2020.2992077 doi (DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 DE-627 ger DE-627 rakwb eng TK1-9971 Wenjie Chen verfasserin aut Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering Junfeng Jiang verfasserin aut Kun Liu verfasserin aut Shuang Wang verfasserin aut Zhe Ma verfasserin aut Zhenyang Ding verfasserin aut Tianhua Xu verfasserin aut Tiegen Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 85395-85400 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:85395-85400 https://doi.org/10.1109/ACCESS.2020.2992077 kostenfrei https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 kostenfrei https://ieeexplore.ieee.org/document/9085374/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 85395-85400 |
language |
English |
source |
In IEEE Access 8(2020), Seite 85395-85400 volume:8 year:2020 pages:85395-85400 |
sourceStr |
In IEEE Access 8(2020), Seite 85395-85400 volume:8 year:2020 pages:85395-85400 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Wenjie Chen @@aut@@ Junfeng Jiang @@aut@@ Kun Liu @@aut@@ Shuang Wang @@aut@@ Zhe Ma @@aut@@ Zhenyang Ding @@aut@@ Tianhua Xu @@aut@@ Tiegen Liu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ052751201 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052751201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308170750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2992077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052751201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4662060bfe97479e9f9d87ef36460981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wenjie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical pulses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherent OTDR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junfeng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyang Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianhua Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiegen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 85395-85400</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:85395-85400</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2992077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4662060bfe97479e9f9d87ef36460981</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9085374/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">85395-85400</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Wenjie Chen |
spellingShingle |
Wenjie Chen misc TK1-9971 misc Optical fiber sensors misc optical pulses misc interference misc phase detection misc coherent OTDR misc distributed sensing misc Electrical engineering. Electronics. Nuclear engineering Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
authorStr |
Wenjie Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing Optical fiber sensors optical pulses interference phase detection coherent OTDR distributed sensing |
topic |
misc TK1-9971 misc Optical fiber sensors misc optical pulses misc interference misc phase detection misc coherent OTDR misc distributed sensing misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Optical fiber sensors misc optical pulses misc interference misc phase detection misc coherent OTDR misc distributed sensing misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Optical fiber sensors misc optical pulses misc interference misc phase detection misc coherent OTDR misc distributed sensing misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
ctrlnum |
(DE-627)DOAJ052751201 (DE-599)DOAJ4662060bfe97479e9f9d87ef36460981 |
title_full |
Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
author_sort |
Wenjie Chen |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
85395 |
author_browse |
Wenjie Chen Junfeng Jiang Kun Liu Shuang Wang Zhe Ma Zhenyang Ding Tianhua Xu Tiegen Liu |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Wenjie Chen |
doi_str_mv |
10.1109/ACCESS.2020.2992077 |
author2-role |
verfasserin |
title_sort |
coherent otdr using flexible all-digital orthogonal phase code pulse for distributed sensing |
callnumber |
TK1-9971 |
title_auth |
Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
abstract |
A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. |
abstractGer |
A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. |
abstract_unstemmed |
A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing |
url |
https://doi.org/10.1109/ACCESS.2020.2992077 https://doaj.org/article/4662060bfe97479e9f9d87ef36460981 https://ieeexplore.ieee.org/document/9085374/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Junfeng Jiang Kun Liu Shuang Wang Zhe Ma Zhenyang Ding Tianhua Xu Tiegen Liu |
author2Str |
Junfeng Jiang Kun Liu Shuang Wang Zhe Ma Zhenyang Ding Tianhua Xu Tiegen Liu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2992077 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:51:08.833Z |
_version_ |
1803566101389377536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052751201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308170750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2992077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052751201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4662060bfe97479e9f9d87ef36460981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wenjie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A coherent optical time-domain reflectometer (COTDR) using flexible all-digital orthogonal phase code pulse is proposed for distributed acoustic sensing. All-digital orthogonal phase code pulse with frequency shift and time shift is used as probe. Coherent detection and balance photodetector are used to amplify interference signal and get rid of its direct-current (DC) component. The new scheme needs only single channel detection while keeping sampling frequency. Amplitude triangle modulation and frequency linear sweep modulation waveform are used for system performance investigation. The experiments on 15.4 km optical fiber showed that waveform information can be recovered well. The all-digital orthogonal phase code pulse will provide a flexible solution for different application requirement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical pulses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherent OTDR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junfeng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyang Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianhua Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiegen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 85395-85400</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:85395-85400</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2992077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4662060bfe97479e9f9d87ef36460981</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9085374/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">85395-85400</subfield></datafield></record></collection>
|
score |
7.4021883 |