Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers
Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. Howe...
Ausführliche Beschreibung
Autor*in: |
Daiyan Li [verfasserIn] Juwei Zhang [verfasserIn] Haijiao Liu [verfasserIn] Binwen Tan [verfasserIn] Wei Zhu [verfasserIn] Lili Xu [verfasserIn] Yi Wang [verfasserIn] Jian Zeng [verfasserIn] Xing Fan [verfasserIn] Lina Sha [verfasserIn] Haiqin Zhang [verfasserIn] Jian Ma [verfasserIn] Guoyue Chen [verfasserIn] Yonghong Zhou [verfasserIn] Houyang Kang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Tetraploid Thinopyrum elongatum |
---|
Übergeordnetes Werk: |
In: BMC Genomics - BMC, 2003, 20(2019), 1, Seite 16 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2019 ; number:1 ; pages:16 |
Links: |
---|
DOI / URN: |
10.1186/s12864-019-6359-9 |
---|
Katalog-ID: |
DOAJ05281338X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05281338X | ||
003 | DE-627 | ||
005 | 20230308171036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-019-6359-9 |2 doi | |
035 | |a (DE-627)DOAJ05281338X | ||
035 | |a (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH426-470 | |
100 | 0 | |a Daiyan Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. | ||
650 | 4 | |a Tetraploid Thinopyrum elongatum | |
650 | 4 | |a Chromosome substitution line | |
650 | 4 | |a Stripe rust | |
650 | 4 | |a Species- specific molecular markers | |
650 | 4 | |a GBS | |
653 | 0 | |a Biotechnology | |
653 | 0 | |a Genetics | |
700 | 0 | |a Juwei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Haijiao Liu |e verfasserin |4 aut | |
700 | 0 | |a Binwen Tan |e verfasserin |4 aut | |
700 | 0 | |a Wei Zhu |e verfasserin |4 aut | |
700 | 0 | |a Lili Xu |e verfasserin |4 aut | |
700 | 0 | |a Yi Wang |e verfasserin |4 aut | |
700 | 0 | |a Jian Zeng |e verfasserin |4 aut | |
700 | 0 | |a Xing Fan |e verfasserin |4 aut | |
700 | 0 | |a Lina Sha |e verfasserin |4 aut | |
700 | 0 | |a Haiqin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jian Ma |e verfasserin |4 aut | |
700 | 0 | |a Guoyue Chen |e verfasserin |4 aut | |
700 | 0 | |a Yonghong Zhou |e verfasserin |4 aut | |
700 | 0 | |a Houyang Kang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Genomics |d BMC, 2003 |g 20(2019), 1, Seite 16 |w (DE-627)326644954 |w (DE-600)2041499-7 |x 14712164 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2019 |g number:1 |g pages:16 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12864-019-6359-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12864-019-6359-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2164 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2019 |e 1 |h 16 |
author_variant |
d l dl j z jz h l hl b t bt w z wz l x lx y w yw j z jz x f xf l s ls h z hz j m jm g c gc y z yz h k hk |
---|---|
matchkey_str |
article:14712164:2019----::hrceiainfweterpodhnprmlnau11sbtttolnk741yyooiaadhntp |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TP |
publishDate |
2019 |
allfields |
10.1186/s12864-019-6359-9 doi (DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Daiyan Li verfasserin aut Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics Juwei Zhang verfasserin aut Haijiao Liu verfasserin aut Binwen Tan verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Jian Ma verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In BMC Genomics BMC, 2003 20(2019), 1, Seite 16 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:20 year:2019 number:1 pages:16 https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 kostenfrei https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 16 |
spelling |
10.1186/s12864-019-6359-9 doi (DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Daiyan Li verfasserin aut Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics Juwei Zhang verfasserin aut Haijiao Liu verfasserin aut Binwen Tan verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Jian Ma verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In BMC Genomics BMC, 2003 20(2019), 1, Seite 16 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:20 year:2019 number:1 pages:16 https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 kostenfrei https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 16 |
allfields_unstemmed |
10.1186/s12864-019-6359-9 doi (DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Daiyan Li verfasserin aut Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics Juwei Zhang verfasserin aut Haijiao Liu verfasserin aut Binwen Tan verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Jian Ma verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In BMC Genomics BMC, 2003 20(2019), 1, Seite 16 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:20 year:2019 number:1 pages:16 https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 kostenfrei https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 16 |
allfieldsGer |
10.1186/s12864-019-6359-9 doi (DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Daiyan Li verfasserin aut Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics Juwei Zhang verfasserin aut Haijiao Liu verfasserin aut Binwen Tan verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Jian Ma verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In BMC Genomics BMC, 2003 20(2019), 1, Seite 16 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:20 year:2019 number:1 pages:16 https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 kostenfrei https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 16 |
allfieldsSound |
10.1186/s12864-019-6359-9 doi (DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Daiyan Li verfasserin aut Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics Juwei Zhang verfasserin aut Haijiao Liu verfasserin aut Binwen Tan verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Jian Ma verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In BMC Genomics BMC, 2003 20(2019), 1, Seite 16 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:20 year:2019 number:1 pages:16 https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 kostenfrei https://doi.org/10.1186/s12864-019-6359-9 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 16 |
language |
English |
source |
In BMC Genomics 20(2019), 1, Seite 16 volume:20 year:2019 number:1 pages:16 |
sourceStr |
In BMC Genomics 20(2019), 1, Seite 16 volume:20 year:2019 number:1 pages:16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS Biotechnology Genetics |
isfreeaccess_bool |
true |
container_title |
BMC Genomics |
authorswithroles_txt_mv |
Daiyan Li @@aut@@ Juwei Zhang @@aut@@ Haijiao Liu @@aut@@ Binwen Tan @@aut@@ Wei Zhu @@aut@@ Lili Xu @@aut@@ Yi Wang @@aut@@ Jian Zeng @@aut@@ Xing Fan @@aut@@ Lina Sha @@aut@@ Haiqin Zhang @@aut@@ Jian Ma @@aut@@ Guoyue Chen @@aut@@ Yonghong Zhou @@aut@@ Houyang Kang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
DOAJ05281338X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05281338X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308171036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-019-6359-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05281338X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daiyan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetraploid Thinopyrum elongatum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromosome substitution line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Species- specific molecular markers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GBS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijiao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binwen Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghong Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houyang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">20(2019), 1, Seite 16</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-019-6359-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-019-6359-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Daiyan Li |
spellingShingle |
Daiyan Li misc TP248.13-248.65 misc QH426-470 misc Tetraploid Thinopyrum elongatum misc Chromosome substitution line misc Stripe rust misc Species- specific molecular markers misc GBS misc Biotechnology misc Genetics Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
authorStr |
Daiyan Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
14712164 |
topic_title |
TP248.13-248.65 QH426-470 Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers Tetraploid Thinopyrum elongatum Chromosome substitution line Stripe rust Species- specific molecular markers GBS |
topic |
misc TP248.13-248.65 misc QH426-470 misc Tetraploid Thinopyrum elongatum misc Chromosome substitution line misc Stripe rust misc Species- specific molecular markers misc GBS misc Biotechnology misc Genetics |
topic_unstemmed |
misc TP248.13-248.65 misc QH426-470 misc Tetraploid Thinopyrum elongatum misc Chromosome substitution line misc Stripe rust misc Species- specific molecular markers misc GBS misc Biotechnology misc Genetics |
topic_browse |
misc TP248.13-248.65 misc QH426-470 misc Tetraploid Thinopyrum elongatum misc Chromosome substitution line misc Stripe rust misc Species- specific molecular markers misc GBS misc Biotechnology misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC Genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
ctrlnum |
(DE-627)DOAJ05281338X (DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6 |
title_full |
Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
author_sort |
Daiyan Li |
journal |
BMC Genomics |
journalStr |
BMC Genomics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
16 |
author_browse |
Daiyan Li Juwei Zhang Haijiao Liu Binwen Tan Wei Zhu Lili Xu Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Jian Ma Guoyue Chen Yonghong Zhou Houyang Kang |
container_volume |
20 |
class |
TP248.13-248.65 QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Daiyan Li |
doi_str_mv |
10.1186/s12864-019-6359-9 |
author2-role |
verfasserin |
title_sort |
characterization of a wheat–tetraploid thinopyrum elongatum 1e(1d) substitution line k17–841-1 by cytological and phenotypic analysis and developed molecular markers |
callnumber |
TP248.13-248.65 |
title_auth |
Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
abstract |
Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. |
abstractGer |
Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. |
abstract_unstemmed |
Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers |
url |
https://doi.org/10.1186/s12864-019-6359-9 https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6 https://doaj.org/toc/1471-2164 |
remote_bool |
true |
author2 |
Juwei Zhang Haijiao Liu Binwen Tan Wei Zhu Lili Xu Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Jian Ma Guoyue Chen Yonghong Zhou Houyang Kang |
author2Str |
Juwei Zhang Haijiao Liu Binwen Tan Wei Zhu Lili Xu Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Jian Ma Guoyue Chen Yonghong Zhou Houyang Kang |
ppnlink |
326644954 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-019-6359-9 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T14:11:56.276Z |
_version_ |
1803567409430265856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05281338X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308171036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-019-6359-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05281338X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdde7e1376c8c431ea34d6ebb0e5df1a6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daiyan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of a wheat–tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841-1 by cytological and phenotypic analysis and developed molecular markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetraploid Thinopyrum elongatum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromosome substitution line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Species- specific molecular markers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GBS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijiao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binwen Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghong Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houyang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">20(2019), 1, Seite 16</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-019-6359-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dde7e1376c8c431ea34d6ebb0e5df1a6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-019-6359-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
score |
7.399585 |