On Driver Behavior Recognition for Increased Safety: A Roadmap
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and co...
Ausführliche Beschreibung
Autor*in: |
Luca Davoli [verfasserIn] Marco Martalò [verfasserIn] Antonio Cilfone [verfasserIn] Laura Belli [verfasserIn] Gianluigi Ferrari [verfasserIn] Roberta Presta [verfasserIn] Roberto Montanari [verfasserIn] Maura Mengoni [verfasserIn] Luca Giraldi [verfasserIn] Elvio G. Amparore [verfasserIn] Marco Botta [verfasserIn] Idilio Drago [verfasserIn] Giuseppe Carbonara [verfasserIn] Andrea Castellano [verfasserIn] Johan Plomp [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Safety - MDPI AG, 2016, 6(2020), 4, p 55 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2020 ; number:4, p 55 |
Links: |
---|
DOI / URN: |
10.3390/safety6040055 |
---|
Katalog-ID: |
DOAJ052846407 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ052846407 | ||
003 | DE-627 | ||
005 | 20240412205854.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/safety6040055 |2 doi | |
035 | |a (DE-627)DOAJ052846407 | ||
035 | |a (DE-599)DOAJa891264787d649458bc2a34dd2afa1de | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T55-55.3 | |
050 | 0 | |a R5-920 | |
100 | 0 | |a Luca Davoli |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Driver Behavior Recognition for Increased Safety: A Roadmap |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. | ||
650 | 4 | |a Advanced Driver-Assistance System (ADAS) | |
650 | 4 | |a driver safety and comfort | |
650 | 4 | |a emotion recognition | |
650 | 4 | |a Artificial Intelligence (AI) | |
650 | 4 | |a Driver Complex State (DCS) | |
653 | 0 | |a Industrial safety. Industrial accident prevention | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Marco Martalò |e verfasserin |4 aut | |
700 | 0 | |a Antonio Cilfone |e verfasserin |4 aut | |
700 | 0 | |a Laura Belli |e verfasserin |4 aut | |
700 | 0 | |a Gianluigi Ferrari |e verfasserin |4 aut | |
700 | 0 | |a Roberta Presta |e verfasserin |4 aut | |
700 | 0 | |a Roberto Montanari |e verfasserin |4 aut | |
700 | 0 | |a Maura Mengoni |e verfasserin |4 aut | |
700 | 0 | |a Luca Giraldi |e verfasserin |4 aut | |
700 | 0 | |a Elvio G. Amparore |e verfasserin |4 aut | |
700 | 0 | |a Marco Botta |e verfasserin |4 aut | |
700 | 0 | |a Idilio Drago |e verfasserin |4 aut | |
700 | 0 | |a Giuseppe Carbonara |e verfasserin |4 aut | |
700 | 0 | |a Andrea Castellano |e verfasserin |4 aut | |
700 | 0 | |a Johan Plomp |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Safety |d MDPI AG, 2016 |g 6(2020), 4, p 55 |w (DE-627)842242228 |w (DE-600)2841166-3 |x 2313576X |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2020 |g number:4, p 55 |
856 | 4 | 0 | |u https://doi.org/10.3390/safety6040055 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a891264787d649458bc2a34dd2afa1de |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2313-576X/6/4/55 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2313-576X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2020 |e 4, p 55 |
author_variant |
l d ld m m mm a c ac l b lb g f gf r p rp r m rm m m mm l g lg e g a ega m b mb i d id g c gc a c ac j p jp |
---|---|
matchkey_str |
article:2313576X:2020----::nrvreaireontofrnrae |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
T |
publishDate |
2020 |
allfields |
10.3390/safety6040055 doi (DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de DE-627 ger DE-627 rakwb eng T55-55.3 R5-920 Luca Davoli verfasserin aut On Driver Behavior Recognition for Increased Safety: A Roadmap 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) Marco Martalò verfasserin aut Antonio Cilfone verfasserin aut Laura Belli verfasserin aut Gianluigi Ferrari verfasserin aut Roberta Presta verfasserin aut Roberto Montanari verfasserin aut Maura Mengoni verfasserin aut Luca Giraldi verfasserin aut Elvio G. Amparore verfasserin aut Marco Botta verfasserin aut Idilio Drago verfasserin aut Giuseppe Carbonara verfasserin aut Andrea Castellano verfasserin aut Johan Plomp verfasserin aut In Safety MDPI AG, 2016 6(2020), 4, p 55 (DE-627)842242228 (DE-600)2841166-3 2313576X nnns volume:6 year:2020 number:4, p 55 https://doi.org/10.3390/safety6040055 kostenfrei https://doaj.org/article/a891264787d649458bc2a34dd2afa1de kostenfrei https://www.mdpi.com/2313-576X/6/4/55 kostenfrei https://doaj.org/toc/2313-576X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 4, p 55 |
spelling |
10.3390/safety6040055 doi (DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de DE-627 ger DE-627 rakwb eng T55-55.3 R5-920 Luca Davoli verfasserin aut On Driver Behavior Recognition for Increased Safety: A Roadmap 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) Marco Martalò verfasserin aut Antonio Cilfone verfasserin aut Laura Belli verfasserin aut Gianluigi Ferrari verfasserin aut Roberta Presta verfasserin aut Roberto Montanari verfasserin aut Maura Mengoni verfasserin aut Luca Giraldi verfasserin aut Elvio G. Amparore verfasserin aut Marco Botta verfasserin aut Idilio Drago verfasserin aut Giuseppe Carbonara verfasserin aut Andrea Castellano verfasserin aut Johan Plomp verfasserin aut In Safety MDPI AG, 2016 6(2020), 4, p 55 (DE-627)842242228 (DE-600)2841166-3 2313576X nnns volume:6 year:2020 number:4, p 55 https://doi.org/10.3390/safety6040055 kostenfrei https://doaj.org/article/a891264787d649458bc2a34dd2afa1de kostenfrei https://www.mdpi.com/2313-576X/6/4/55 kostenfrei https://doaj.org/toc/2313-576X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 4, p 55 |
allfields_unstemmed |
10.3390/safety6040055 doi (DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de DE-627 ger DE-627 rakwb eng T55-55.3 R5-920 Luca Davoli verfasserin aut On Driver Behavior Recognition for Increased Safety: A Roadmap 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) Marco Martalò verfasserin aut Antonio Cilfone verfasserin aut Laura Belli verfasserin aut Gianluigi Ferrari verfasserin aut Roberta Presta verfasserin aut Roberto Montanari verfasserin aut Maura Mengoni verfasserin aut Luca Giraldi verfasserin aut Elvio G. Amparore verfasserin aut Marco Botta verfasserin aut Idilio Drago verfasserin aut Giuseppe Carbonara verfasserin aut Andrea Castellano verfasserin aut Johan Plomp verfasserin aut In Safety MDPI AG, 2016 6(2020), 4, p 55 (DE-627)842242228 (DE-600)2841166-3 2313576X nnns volume:6 year:2020 number:4, p 55 https://doi.org/10.3390/safety6040055 kostenfrei https://doaj.org/article/a891264787d649458bc2a34dd2afa1de kostenfrei https://www.mdpi.com/2313-576X/6/4/55 kostenfrei https://doaj.org/toc/2313-576X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 4, p 55 |
allfieldsGer |
10.3390/safety6040055 doi (DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de DE-627 ger DE-627 rakwb eng T55-55.3 R5-920 Luca Davoli verfasserin aut On Driver Behavior Recognition for Increased Safety: A Roadmap 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) Marco Martalò verfasserin aut Antonio Cilfone verfasserin aut Laura Belli verfasserin aut Gianluigi Ferrari verfasserin aut Roberta Presta verfasserin aut Roberto Montanari verfasserin aut Maura Mengoni verfasserin aut Luca Giraldi verfasserin aut Elvio G. Amparore verfasserin aut Marco Botta verfasserin aut Idilio Drago verfasserin aut Giuseppe Carbonara verfasserin aut Andrea Castellano verfasserin aut Johan Plomp verfasserin aut In Safety MDPI AG, 2016 6(2020), 4, p 55 (DE-627)842242228 (DE-600)2841166-3 2313576X nnns volume:6 year:2020 number:4, p 55 https://doi.org/10.3390/safety6040055 kostenfrei https://doaj.org/article/a891264787d649458bc2a34dd2afa1de kostenfrei https://www.mdpi.com/2313-576X/6/4/55 kostenfrei https://doaj.org/toc/2313-576X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 4, p 55 |
allfieldsSound |
10.3390/safety6040055 doi (DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de DE-627 ger DE-627 rakwb eng T55-55.3 R5-920 Luca Davoli verfasserin aut On Driver Behavior Recognition for Increased Safety: A Roadmap 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) Marco Martalò verfasserin aut Antonio Cilfone verfasserin aut Laura Belli verfasserin aut Gianluigi Ferrari verfasserin aut Roberta Presta verfasserin aut Roberto Montanari verfasserin aut Maura Mengoni verfasserin aut Luca Giraldi verfasserin aut Elvio G. Amparore verfasserin aut Marco Botta verfasserin aut Idilio Drago verfasserin aut Giuseppe Carbonara verfasserin aut Andrea Castellano verfasserin aut Johan Plomp verfasserin aut In Safety MDPI AG, 2016 6(2020), 4, p 55 (DE-627)842242228 (DE-600)2841166-3 2313576X nnns volume:6 year:2020 number:4, p 55 https://doi.org/10.3390/safety6040055 kostenfrei https://doaj.org/article/a891264787d649458bc2a34dd2afa1de kostenfrei https://www.mdpi.com/2313-576X/6/4/55 kostenfrei https://doaj.org/toc/2313-576X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2020 4, p 55 |
language |
English |
source |
In Safety 6(2020), 4, p 55 volume:6 year:2020 number:4, p 55 |
sourceStr |
In Safety 6(2020), 4, p 55 volume:6 year:2020 number:4, p 55 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) Industrial safety. Industrial accident prevention Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Safety |
authorswithroles_txt_mv |
Luca Davoli @@aut@@ Marco Martalò @@aut@@ Antonio Cilfone @@aut@@ Laura Belli @@aut@@ Gianluigi Ferrari @@aut@@ Roberta Presta @@aut@@ Roberto Montanari @@aut@@ Maura Mengoni @@aut@@ Luca Giraldi @@aut@@ Elvio G. Amparore @@aut@@ Marco Botta @@aut@@ Idilio Drago @@aut@@ Giuseppe Carbonara @@aut@@ Andrea Castellano @@aut@@ Johan Plomp @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
842242228 |
id |
DOAJ052846407 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052846407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412205854.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/safety6040055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052846407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa891264787d649458bc2a34dd2afa1de</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55-55.3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luca Davoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Driver Behavior Recognition for Increased Safety: A Roadmap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced Driver-Assistance System (ADAS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driver safety and comfort</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emotion recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (AI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driver Complex State (DCS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial safety. Industrial accident prevention</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Martalò</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Cilfone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Belli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gianluigi Ferrari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberta Presta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Montanari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maura Mengoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Giraldi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elvio G. Amparore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Botta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idilio Drago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Carbonara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Castellano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Plomp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Safety</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">6(2020), 4, p 55</subfield><subfield code="w">(DE-627)842242228</subfield><subfield code="w">(DE-600)2841166-3</subfield><subfield code="x">2313576X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/safety6040055</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a891264787d649458bc2a34dd2afa1de</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-576X/6/4/55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-576X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 55</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Luca Davoli |
spellingShingle |
Luca Davoli misc T55-55.3 misc R5-920 misc Advanced Driver-Assistance System (ADAS) misc driver safety and comfort misc emotion recognition misc Artificial Intelligence (AI) misc Driver Complex State (DCS) misc Industrial safety. Industrial accident prevention misc Medicine (General) On Driver Behavior Recognition for Increased Safety: A Roadmap |
authorStr |
Luca Davoli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)842242228 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T55-55 |
illustrated |
Not Illustrated |
issn |
2313576X |
topic_title |
T55-55.3 R5-920 On Driver Behavior Recognition for Increased Safety: A Roadmap Advanced Driver-Assistance System (ADAS) driver safety and comfort emotion recognition Artificial Intelligence (AI) Driver Complex State (DCS) |
topic |
misc T55-55.3 misc R5-920 misc Advanced Driver-Assistance System (ADAS) misc driver safety and comfort misc emotion recognition misc Artificial Intelligence (AI) misc Driver Complex State (DCS) misc Industrial safety. Industrial accident prevention misc Medicine (General) |
topic_unstemmed |
misc T55-55.3 misc R5-920 misc Advanced Driver-Assistance System (ADAS) misc driver safety and comfort misc emotion recognition misc Artificial Intelligence (AI) misc Driver Complex State (DCS) misc Industrial safety. Industrial accident prevention misc Medicine (General) |
topic_browse |
misc T55-55.3 misc R5-920 misc Advanced Driver-Assistance System (ADAS) misc driver safety and comfort misc emotion recognition misc Artificial Intelligence (AI) misc Driver Complex State (DCS) misc Industrial safety. Industrial accident prevention misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Safety |
hierarchy_parent_id |
842242228 |
hierarchy_top_title |
Safety |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)842242228 (DE-600)2841166-3 |
title |
On Driver Behavior Recognition for Increased Safety: A Roadmap |
ctrlnum |
(DE-627)DOAJ052846407 (DE-599)DOAJa891264787d649458bc2a34dd2afa1de |
title_full |
On Driver Behavior Recognition for Increased Safety: A Roadmap |
author_sort |
Luca Davoli |
journal |
Safety |
journalStr |
Safety |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Luca Davoli Marco Martalò Antonio Cilfone Laura Belli Gianluigi Ferrari Roberta Presta Roberto Montanari Maura Mengoni Luca Giraldi Elvio G. Amparore Marco Botta Idilio Drago Giuseppe Carbonara Andrea Castellano Johan Plomp |
container_volume |
6 |
class |
T55-55.3 R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Luca Davoli |
doi_str_mv |
10.3390/safety6040055 |
author2-role |
verfasserin |
title_sort |
on driver behavior recognition for increased safety: a roadmap |
callnumber |
T55-55.3 |
title_auth |
On Driver Behavior Recognition for Increased Safety: A Roadmap |
abstract |
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. |
abstractGer |
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. |
abstract_unstemmed |
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 55 |
title_short |
On Driver Behavior Recognition for Increased Safety: A Roadmap |
url |
https://doi.org/10.3390/safety6040055 https://doaj.org/article/a891264787d649458bc2a34dd2afa1de https://www.mdpi.com/2313-576X/6/4/55 https://doaj.org/toc/2313-576X |
remote_bool |
true |
author2 |
Marco Martalò Antonio Cilfone Laura Belli Gianluigi Ferrari Roberta Presta Roberto Montanari Maura Mengoni Luca Giraldi Elvio G. Amparore Marco Botta Idilio Drago Giuseppe Carbonara Andrea Castellano Johan Plomp |
author2Str |
Marco Martalò Antonio Cilfone Laura Belli Gianluigi Ferrari Roberta Presta Roberto Montanari Maura Mengoni Luca Giraldi Elvio G. Amparore Marco Botta Idilio Drago Giuseppe Carbonara Andrea Castellano Johan Plomp |
ppnlink |
842242228 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/safety6040055 |
callnumber-a |
T55-55.3 |
up_date |
2024-07-03T14:23:04.410Z |
_version_ |
1803568110026883072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ052846407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412205854.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/safety6040055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ052846407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa891264787d649458bc2a34dd2afa1de</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55-55.3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luca Davoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Driver Behavior Recognition for Increased Safety: A Roadmap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced Driver-Assistance System (ADAS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driver safety and comfort</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emotion recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (AI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driver Complex State (DCS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial safety. Industrial accident prevention</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Martalò</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Cilfone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Belli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gianluigi Ferrari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberta Presta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Montanari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maura Mengoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Giraldi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elvio G. Amparore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Botta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idilio Drago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Carbonara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Castellano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Plomp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Safety</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">6(2020), 4, p 55</subfield><subfield code="w">(DE-627)842242228</subfield><subfield code="w">(DE-600)2841166-3</subfield><subfield code="x">2313576X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/safety6040055</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a891264787d649458bc2a34dd2afa1de</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-576X/6/4/55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-576X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 55</subfield></datafield></record></collection>
|
score |
7.4031916 |