Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin
The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinet...
Ausführliche Beschreibung
Autor*in: |
Stefania Abbruzzetti [verfasserIn] Alex J. Barker [verfasserIn] Irene Villar [verfasserIn] Carmen Pérez-Rontomé [verfasserIn] Stefano Bruno [verfasserIn] Giulio Cerullo [verfasserIn] Cristiano Viappiani [verfasserIn] Manuel Becana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 22(2021), 5, p 2740 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2021 ; number:5, p 2740 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms22052740 |
---|
Katalog-ID: |
DOAJ05309560X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05309560X | ||
003 | DE-627 | ||
005 | 20240412191533.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms22052740 |2 doi | |
035 | |a (DE-627)DOAJ05309560X | ||
035 | |a (DE-599)DOAJb25e27847c9649539137ba676a087cf2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Stefania Abbruzzetti |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. | ||
650 | 4 | |a <i<Medicago truncatula</i< | |
650 | 4 | |a ultrafast spectroscopy | |
650 | 4 | |a plant hemoglobins | |
650 | 4 | |a CO rebinding kinetics | |
650 | 4 | |a iron/heme hexacoordination | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Alex J. Barker |e verfasserin |4 aut | |
700 | 0 | |a Irene Villar |e verfasserin |4 aut | |
700 | 0 | |a Carmen Pérez-Rontomé |e verfasserin |4 aut | |
700 | 0 | |a Stefano Bruno |e verfasserin |4 aut | |
700 | 0 | |a Giulio Cerullo |e verfasserin |4 aut | |
700 | 0 | |a Cristiano Viappiani |e verfasserin |4 aut | |
700 | 0 | |a Manuel Becana |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 22(2021), 5, p 2740 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2021 |g number:5, p 2740 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms22052740 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b25e27847c9649539137ba676a087cf2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/22/5/2740 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2021 |e 5, p 2740 |
author_variant |
s a sa a j b ajb i v iv c p r cpr s b sb g c gc c v cv m b mb |
---|---|
matchkey_str |
article:14220067:2021----::nsalfsiiiitdloriainnp |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.3390/ijms22052740 doi (DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Stefania Abbruzzetti verfasserin aut Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry Alex J. Barker verfasserin aut Irene Villar verfasserin aut Carmen Pérez-Rontomé verfasserin aut Stefano Bruno verfasserin aut Giulio Cerullo verfasserin aut Cristiano Viappiani verfasserin aut Manuel Becana verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 5, p 2740 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:5, p 2740 https://doi.org/10.3390/ijms22052740 kostenfrei https://doaj.org/article/b25e27847c9649539137ba676a087cf2 kostenfrei https://www.mdpi.com/1422-0067/22/5/2740 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 5, p 2740 |
spelling |
10.3390/ijms22052740 doi (DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Stefania Abbruzzetti verfasserin aut Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry Alex J. Barker verfasserin aut Irene Villar verfasserin aut Carmen Pérez-Rontomé verfasserin aut Stefano Bruno verfasserin aut Giulio Cerullo verfasserin aut Cristiano Viappiani verfasserin aut Manuel Becana verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 5, p 2740 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:5, p 2740 https://doi.org/10.3390/ijms22052740 kostenfrei https://doaj.org/article/b25e27847c9649539137ba676a087cf2 kostenfrei https://www.mdpi.com/1422-0067/22/5/2740 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 5, p 2740 |
allfields_unstemmed |
10.3390/ijms22052740 doi (DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Stefania Abbruzzetti verfasserin aut Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry Alex J. Barker verfasserin aut Irene Villar verfasserin aut Carmen Pérez-Rontomé verfasserin aut Stefano Bruno verfasserin aut Giulio Cerullo verfasserin aut Cristiano Viappiani verfasserin aut Manuel Becana verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 5, p 2740 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:5, p 2740 https://doi.org/10.3390/ijms22052740 kostenfrei https://doaj.org/article/b25e27847c9649539137ba676a087cf2 kostenfrei https://www.mdpi.com/1422-0067/22/5/2740 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 5, p 2740 |
allfieldsGer |
10.3390/ijms22052740 doi (DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Stefania Abbruzzetti verfasserin aut Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry Alex J. Barker verfasserin aut Irene Villar verfasserin aut Carmen Pérez-Rontomé verfasserin aut Stefano Bruno verfasserin aut Giulio Cerullo verfasserin aut Cristiano Viappiani verfasserin aut Manuel Becana verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 5, p 2740 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:5, p 2740 https://doi.org/10.3390/ijms22052740 kostenfrei https://doaj.org/article/b25e27847c9649539137ba676a087cf2 kostenfrei https://www.mdpi.com/1422-0067/22/5/2740 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 5, p 2740 |
allfieldsSound |
10.3390/ijms22052740 doi (DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Stefania Abbruzzetti verfasserin aut Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry Alex J. Barker verfasserin aut Irene Villar verfasserin aut Carmen Pérez-Rontomé verfasserin aut Stefano Bruno verfasserin aut Giulio Cerullo verfasserin aut Cristiano Viappiani verfasserin aut Manuel Becana verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 22(2021), 5, p 2740 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:22 year:2021 number:5, p 2740 https://doi.org/10.3390/ijms22052740 kostenfrei https://doaj.org/article/b25e27847c9649539137ba676a087cf2 kostenfrei https://www.mdpi.com/1422-0067/22/5/2740 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 5, p 2740 |
language |
English |
source |
In International Journal of Molecular Sciences 22(2021), 5, p 2740 volume:22 year:2021 number:5, p 2740 |
sourceStr |
In International Journal of Molecular Sciences 22(2021), 5, p 2740 volume:22 year:2021 number:5, p 2740 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Stefania Abbruzzetti @@aut@@ Alex J. Barker @@aut@@ Irene Villar @@aut@@ Carmen Pérez-Rontomé @@aut@@ Stefano Bruno @@aut@@ Giulio Cerullo @@aut@@ Cristiano Viappiani @@aut@@ Manuel Becana @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ05309560X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05309560X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412191533.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms22052740</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05309560X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb25e27847c9649539137ba676a087cf2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefania Abbruzzetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Medicago truncatula</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant hemoglobins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO rebinding kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron/heme hexacoordination</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex J. Barker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Villar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carmen Pérez-Rontomé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulio Cerullo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristiano Viappiani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manuel Becana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2021), 5, p 2740</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 2740</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms22052740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b25e27847c9649539137ba676a087cf2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/22/5/2740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 2740</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Stefania Abbruzzetti |
spellingShingle |
Stefania Abbruzzetti misc QH301-705.5 misc QD1-999 misc <i<Medicago truncatula</i< misc ultrafast spectroscopy misc plant hemoglobins misc CO rebinding kinetics misc iron/heme hexacoordination misc Biology (General) misc Chemistry Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
authorStr |
Stefania Abbruzzetti |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin <i<Medicago truncatula</i< ultrafast spectroscopy plant hemoglobins CO rebinding kinetics iron/heme hexacoordination |
topic |
misc QH301-705.5 misc QD1-999 misc <i<Medicago truncatula</i< misc ultrafast spectroscopy misc plant hemoglobins misc CO rebinding kinetics misc iron/heme hexacoordination misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc <i<Medicago truncatula</i< misc ultrafast spectroscopy misc plant hemoglobins misc CO rebinding kinetics misc iron/heme hexacoordination misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc <i<Medicago truncatula</i< misc ultrafast spectroscopy misc plant hemoglobins misc CO rebinding kinetics misc iron/heme hexacoordination misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
ctrlnum |
(DE-627)DOAJ05309560X (DE-599)DOAJb25e27847c9649539137ba676a087cf2 |
title_full |
Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
author_sort |
Stefania Abbruzzetti |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Stefania Abbruzzetti Alex J. Barker Irene Villar Carmen Pérez-Rontomé Stefano Bruno Giulio Cerullo Cristiano Viappiani Manuel Becana |
container_volume |
22 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Stefania Abbruzzetti |
doi_str_mv |
10.3390/ijms22052740 |
author2-role |
verfasserin |
title_sort |
unusually fast <i<bis</i<-histidyl coordination in a plant hemoglobin |
callnumber |
QH301-705.5 |
title_auth |
Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
abstract |
The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. |
abstractGer |
The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. |
abstract_unstemmed |
The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 2740 |
title_short |
Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin |
url |
https://doi.org/10.3390/ijms22052740 https://doaj.org/article/b25e27847c9649539137ba676a087cf2 https://www.mdpi.com/1422-0067/22/5/2740 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Alex J. Barker Irene Villar Carmen Pérez-Rontomé Stefano Bruno Giulio Cerullo Cristiano Viappiani Manuel Becana |
author2Str |
Alex J. Barker Irene Villar Carmen Pérez-Rontomé Stefano Bruno Giulio Cerullo Cristiano Viappiani Manuel Becana |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms22052740 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T15:46:08.867Z |
_version_ |
1803573336599429120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05309560X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412191533.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms22052740</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05309560X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb25e27847c9649539137ba676a087cf2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefania Abbruzzetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unusually Fast <i<bis</i<-Histidyl Coordination in a Plant Hemoglobin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recently identified nonsymbiotic hemoglobin gene <i<MtGlb1-2</i< of the legume <i<Medicago truncatula</i< possesses unique properties as it generates four alternative splice forms encoding proteins with one or two heme domains. Here we investigate the ligand binding kinetics of MtGlb1-2.1 and MtGlb1-2.4, bearing two hemes and one heme, respectively. Unexpectedly, the overall time-course of ligand rebinding was unusually fast. Thus, we complemented nanosecond laser flash photolysis kinetics with data collected with a hybrid femtosecond–nanosecond pump–probe setup. Most photodissociated ligands are rebound geminately within a few nanoseconds, which leads to rates of the bimolecular rebinding to pentacoordinate species in the 10<sup<8</sup< M<sup<−1</sup<s<sup<−1</sup< range. Binding of the distal histidine to the heme competes with CO rebinding with extremely high rates (<i<k<sub<h</sub<</i< ~ 10<sup<5</sup< s<sup<−1</sup<). Histidine dissociation from the heme occurs with comparable rates, thus resulting in moderate equilibrium binding constants (<i<K<sub<H</sub<</i< ~ 1). The rate constants for ligation and deligation of distal histidine to the heme are the highest reported for any plant or vertebrate globin. The combination of microscopic rates results in unusually high overall ligand binding rate constants, a fact that contributes to explaining at the mechanistic level the extremely high reactivity of these proteins toward the physiological ligands oxygen, nitric oxide and nitrite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Medicago truncatula</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant hemoglobins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO rebinding kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron/heme hexacoordination</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex J. Barker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Villar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carmen Pérez-Rontomé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulio Cerullo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristiano Viappiani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manuel Becana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2021), 5, p 2740</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 2740</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms22052740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b25e27847c9649539137ba676a087cf2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/22/5/2740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 2740</subfield></datafield></record></collection>
|
score |
7.4013615 |