Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles
This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-l...
Ausführliche Beschreibung
Autor*in: |
Jong Han Kim [verfasserIn] Sang Won Yoon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 214616-214624 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:214616-214624 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3040733 |
---|
Katalog-ID: |
DOAJ053330641 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ053330641 | ||
003 | DE-627 | ||
005 | 20230501181515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3040733 |2 doi | |
035 | |a (DE-627)DOAJ053330641 | ||
035 | |a (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jong Han Kim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. | ||
650 | 4 | |a Adaptive filter | |
650 | 4 | |a deep neural network | |
650 | 4 | |a slip ratio | |
650 | 4 | |a vehicle speed estimation | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Sang Won Yoon |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 214616-214624 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:214616-214624 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3040733 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9272298/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 214616-214624 |
author_variant |
j h k jhk s w y swy |
---|---|
matchkey_str |
article:21693536:2020----::uleperlewrbsddpieitroetmtnasltlni |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3040733 doi (DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 DE-627 ger DE-627 rakwb eng TK1-9971 Jong Han Kim verfasserin aut Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering Sang Won Yoon verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 214616-214624 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:214616-214624 https://doi.org/10.1109/ACCESS.2020.3040733 kostenfrei https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 kostenfrei https://ieeexplore.ieee.org/document/9272298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 214616-214624 |
spelling |
10.1109/ACCESS.2020.3040733 doi (DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 DE-627 ger DE-627 rakwb eng TK1-9971 Jong Han Kim verfasserin aut Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering Sang Won Yoon verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 214616-214624 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:214616-214624 https://doi.org/10.1109/ACCESS.2020.3040733 kostenfrei https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 kostenfrei https://ieeexplore.ieee.org/document/9272298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 214616-214624 |
allfields_unstemmed |
10.1109/ACCESS.2020.3040733 doi (DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 DE-627 ger DE-627 rakwb eng TK1-9971 Jong Han Kim verfasserin aut Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering Sang Won Yoon verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 214616-214624 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:214616-214624 https://doi.org/10.1109/ACCESS.2020.3040733 kostenfrei https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 kostenfrei https://ieeexplore.ieee.org/document/9272298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 214616-214624 |
allfieldsGer |
10.1109/ACCESS.2020.3040733 doi (DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 DE-627 ger DE-627 rakwb eng TK1-9971 Jong Han Kim verfasserin aut Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering Sang Won Yoon verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 214616-214624 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:214616-214624 https://doi.org/10.1109/ACCESS.2020.3040733 kostenfrei https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 kostenfrei https://ieeexplore.ieee.org/document/9272298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 214616-214624 |
allfieldsSound |
10.1109/ACCESS.2020.3040733 doi (DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 DE-627 ger DE-627 rakwb eng TK1-9971 Jong Han Kim verfasserin aut Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering Sang Won Yoon verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 214616-214624 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:214616-214624 https://doi.org/10.1109/ACCESS.2020.3040733 kostenfrei https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 kostenfrei https://ieeexplore.ieee.org/document/9272298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 214616-214624 |
language |
English |
source |
In IEEE Access 8(2020), Seite 214616-214624 volume:8 year:2020 pages:214616-214624 |
sourceStr |
In IEEE Access 8(2020), Seite 214616-214624 volume:8 year:2020 pages:214616-214624 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive filter deep neural network slip ratio vehicle speed estimation Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jong Han Kim @@aut@@ Sang Won Yoon @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ053330641 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053330641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501181515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3040733</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053330641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3ab43086300546a38804055ca6dc34f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jong Han Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">slip ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vehicle speed estimation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang Won Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 214616-214624</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:214616-214624</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3040733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3ab43086300546a38804055ca6dc34f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9272298/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">214616-214624</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jong Han Kim |
spellingShingle |
Jong Han Kim misc TK1-9971 misc Adaptive filter misc deep neural network misc slip ratio misc vehicle speed estimation misc Electrical engineering. Electronics. Nuclear engineering Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
authorStr |
Jong Han Kim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles Adaptive filter deep neural network slip ratio vehicle speed estimation |
topic |
misc TK1-9971 misc Adaptive filter misc deep neural network misc slip ratio misc vehicle speed estimation misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Adaptive filter misc deep neural network misc slip ratio misc vehicle speed estimation misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Adaptive filter misc deep neural network misc slip ratio misc vehicle speed estimation misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
ctrlnum |
(DE-627)DOAJ053330641 (DE-599)DOAJ3ab43086300546a38804055ca6dc34f3 |
title_full |
Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
author_sort |
Jong Han Kim |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
214616 |
author_browse |
Jong Han Kim Sang Won Yoon |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jong Han Kim |
doi_str_mv |
10.1109/ACCESS.2020.3040733 |
author2-role |
verfasserin |
title_sort |
dual deep neural network based adaptive filter for estimating absolute longitudinal speed of vehicles |
callnumber |
TK1-9971 |
title_auth |
Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
abstract |
This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. |
abstractGer |
This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. |
abstract_unstemmed |
This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles |
url |
https://doi.org/10.1109/ACCESS.2020.3040733 https://doaj.org/article/3ab43086300546a38804055ca6dc34f3 https://ieeexplore.ieee.org/document/9272298/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Sang Won Yoon |
author2Str |
Sang Won Yoon |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3040733 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T17:04:38.290Z |
_version_ |
1803578274787360768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053330641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501181515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3040733</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053330641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3ab43086300546a38804055ca6dc34f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jong Han Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual Deep Neural Network Based Adaptive Filter for Estimating Absolute Longitudinal Speed of Vehicles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various acceleration and deceleration conditions are applied to four different road conditions. Though, it is challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, we adopt two DNN models that were individually trained in low and high acceleration regions. The dual DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive Kalman filter approaches, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">slip ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vehicle speed estimation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang Won Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 214616-214624</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:214616-214624</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3040733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3ab43086300546a38804055ca6dc34f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9272298/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">214616-214624</subfield></datafield></record></collection>
|
score |
7.401991 |