Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study
The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differe...
Ausführliche Beschreibung
Autor*in: |
Marta Ruiz [verfasserIn] María José Beriain [verfasserIn] Miguel Beruete [verfasserIn] Kizkitza Insausti [verfasserIn] José Manuel Lorenzo [verfasserIn] María Victoria Sarriés [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Foods - MDPI AG, 2013, 9(2020), 5, p 583 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:5, p 583 |
Links: |
---|
DOI / URN: |
10.3390/foods9050583 |
---|
Katalog-ID: |
DOAJ053385799 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ053385799 | ||
003 | DE-627 | ||
005 | 20240412234539.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/foods9050583 |2 doi | |
035 | |a (DE-627)DOAJ053385799 | ||
035 | |a (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Marta Ruiz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. | ||
650 | 4 | |a MIR spectroscopy | |
650 | 4 | |a foal meat | |
650 | 4 | |a chemical composition | |
650 | 4 | |a quality parameters | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a María José Beriain |e verfasserin |4 aut | |
700 | 0 | |a Miguel Beruete |e verfasserin |4 aut | |
700 | 0 | |a Kizkitza Insausti |e verfasserin |4 aut | |
700 | 0 | |a José Manuel Lorenzo |e verfasserin |4 aut | |
700 | 0 | |a María Victoria Sarriés |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Foods |d MDPI AG, 2013 |g 9(2020), 5, p 583 |w (DE-627)737287632 |w (DE-600)2704223-6 |x 23048158 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:5, p 583 |
856 | 4 | 0 | |u https://doi.org/10.3390/foods9050583 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/406abe88191444be852332d64b0c5ce2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2304-8158/9/5/583 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2304-8158 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 5, p 583 |
author_variant |
m r mr m j b mjb m b mb k i ki j m l jml m v s mvs |
---|---|
matchkey_str |
article:23048158:2020----::plctoomrpcrsoyoheautooceiacmoiinnqaiyaae |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/foods9050583 doi (DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 DE-627 ger DE-627 rakwb eng TP1-1185 Marta Ruiz verfasserin aut Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. MIR spectroscopy foal meat chemical composition quality parameters Chemical technology María José Beriain verfasserin aut Miguel Beruete verfasserin aut Kizkitza Insausti verfasserin aut José Manuel Lorenzo verfasserin aut María Victoria Sarriés verfasserin aut In Foods MDPI AG, 2013 9(2020), 5, p 583 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:5, p 583 https://doi.org/10.3390/foods9050583 kostenfrei https://doaj.org/article/406abe88191444be852332d64b0c5ce2 kostenfrei https://www.mdpi.com/2304-8158/9/5/583 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 5, p 583 |
spelling |
10.3390/foods9050583 doi (DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 DE-627 ger DE-627 rakwb eng TP1-1185 Marta Ruiz verfasserin aut Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. MIR spectroscopy foal meat chemical composition quality parameters Chemical technology María José Beriain verfasserin aut Miguel Beruete verfasserin aut Kizkitza Insausti verfasserin aut José Manuel Lorenzo verfasserin aut María Victoria Sarriés verfasserin aut In Foods MDPI AG, 2013 9(2020), 5, p 583 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:5, p 583 https://doi.org/10.3390/foods9050583 kostenfrei https://doaj.org/article/406abe88191444be852332d64b0c5ce2 kostenfrei https://www.mdpi.com/2304-8158/9/5/583 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 5, p 583 |
allfields_unstemmed |
10.3390/foods9050583 doi (DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 DE-627 ger DE-627 rakwb eng TP1-1185 Marta Ruiz verfasserin aut Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. MIR spectroscopy foal meat chemical composition quality parameters Chemical technology María José Beriain verfasserin aut Miguel Beruete verfasserin aut Kizkitza Insausti verfasserin aut José Manuel Lorenzo verfasserin aut María Victoria Sarriés verfasserin aut In Foods MDPI AG, 2013 9(2020), 5, p 583 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:5, p 583 https://doi.org/10.3390/foods9050583 kostenfrei https://doaj.org/article/406abe88191444be852332d64b0c5ce2 kostenfrei https://www.mdpi.com/2304-8158/9/5/583 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 5, p 583 |
allfieldsGer |
10.3390/foods9050583 doi (DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 DE-627 ger DE-627 rakwb eng TP1-1185 Marta Ruiz verfasserin aut Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. MIR spectroscopy foal meat chemical composition quality parameters Chemical technology María José Beriain verfasserin aut Miguel Beruete verfasserin aut Kizkitza Insausti verfasserin aut José Manuel Lorenzo verfasserin aut María Victoria Sarriés verfasserin aut In Foods MDPI AG, 2013 9(2020), 5, p 583 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:5, p 583 https://doi.org/10.3390/foods9050583 kostenfrei https://doaj.org/article/406abe88191444be852332d64b0c5ce2 kostenfrei https://www.mdpi.com/2304-8158/9/5/583 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 5, p 583 |
allfieldsSound |
10.3390/foods9050583 doi (DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 DE-627 ger DE-627 rakwb eng TP1-1185 Marta Ruiz verfasserin aut Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. MIR spectroscopy foal meat chemical composition quality parameters Chemical technology María José Beriain verfasserin aut Miguel Beruete verfasserin aut Kizkitza Insausti verfasserin aut José Manuel Lorenzo verfasserin aut María Victoria Sarriés verfasserin aut In Foods MDPI AG, 2013 9(2020), 5, p 583 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:5, p 583 https://doi.org/10.3390/foods9050583 kostenfrei https://doaj.org/article/406abe88191444be852332d64b0c5ce2 kostenfrei https://www.mdpi.com/2304-8158/9/5/583 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 5, p 583 |
language |
English |
source |
In Foods 9(2020), 5, p 583 volume:9 year:2020 number:5, p 583 |
sourceStr |
In Foods 9(2020), 5, p 583 volume:9 year:2020 number:5, p 583 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MIR spectroscopy foal meat chemical composition quality parameters Chemical technology |
isfreeaccess_bool |
true |
container_title |
Foods |
authorswithroles_txt_mv |
Marta Ruiz @@aut@@ María José Beriain @@aut@@ Miguel Beruete @@aut@@ Kizkitza Insausti @@aut@@ José Manuel Lorenzo @@aut@@ María Victoria Sarriés @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
737287632 |
id |
DOAJ053385799 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053385799</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412234539.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods9050583</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053385799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ406abe88191444be852332d64b0c5ce2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marta Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIR spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">foal meat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality parameters</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María José Beriain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miguel Beruete</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kizkitza Insausti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Manuel Lorenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María Victoria Sarriés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 5, p 583</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 583</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods9050583</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/406abe88191444be852332d64b0c5ce2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/9/5/583</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 583</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Marta Ruiz |
spellingShingle |
Marta Ruiz misc TP1-1185 misc MIR spectroscopy misc foal meat misc chemical composition misc quality parameters misc Chemical technology Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
authorStr |
Marta Ruiz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287632 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
23048158 |
topic_title |
TP1-1185 Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study MIR spectroscopy foal meat chemical composition quality parameters |
topic |
misc TP1-1185 misc MIR spectroscopy misc foal meat misc chemical composition misc quality parameters misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc MIR spectroscopy misc foal meat misc chemical composition misc quality parameters misc Chemical technology |
topic_browse |
misc TP1-1185 misc MIR spectroscopy misc foal meat misc chemical composition misc quality parameters misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Foods |
hierarchy_parent_id |
737287632 |
hierarchy_top_title |
Foods |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287632 (DE-600)2704223-6 |
title |
Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
ctrlnum |
(DE-627)DOAJ053385799 (DE-599)DOAJ406abe88191444be852332d64b0c5ce2 |
title_full |
Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
author_sort |
Marta Ruiz |
journal |
Foods |
journalStr |
Foods |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Marta Ruiz María José Beriain Miguel Beruete Kizkitza Insausti José Manuel Lorenzo María Victoria Sarriés |
container_volume |
9 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Marta Ruiz |
doi_str_mv |
10.3390/foods9050583 |
author2-role |
verfasserin |
title_sort |
application of mir spectroscopy to the evaluation of chemical composition and quality parameters of foal meat: a preliminary study |
callnumber |
TP1-1185 |
title_auth |
Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
abstract |
The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. |
abstractGer |
The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. |
abstract_unstemmed |
The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 583 |
title_short |
Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study |
url |
https://doi.org/10.3390/foods9050583 https://doaj.org/article/406abe88191444be852332d64b0c5ce2 https://www.mdpi.com/2304-8158/9/5/583 https://doaj.org/toc/2304-8158 |
remote_bool |
true |
author2 |
María José Beriain Miguel Beruete Kizkitza Insausti José Manuel Lorenzo María Victoria Sarriés |
author2Str |
María José Beriain Miguel Beruete Kizkitza Insausti José Manuel Lorenzo María Victoria Sarriés |
ppnlink |
737287632 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/foods9050583 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T17:23:02.819Z |
_version_ |
1803579432967864320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053385799</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412234539.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods9050583</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053385799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ406abe88191444be852332d64b0c5ce2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marta Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR)with Rv<sup<2</sup< values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv<sup<2</sup< values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (<i<R</i<<sup<2</sup<). With the spectra data of the region 2198–1118 cm<sup<−1</sup<, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm<sup<−1</sup< showed good results for classification purposes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIR spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">foal meat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality parameters</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María José Beriain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miguel Beruete</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kizkitza Insausti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Manuel Lorenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María Victoria Sarriés</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 5, p 583</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 583</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods9050583</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/406abe88191444be852332d64b0c5ce2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/9/5/583</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 583</subfield></datafield></record></collection>
|
score |
7.4006615 |