Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming
In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650,...
Ausführliche Beschreibung
Autor*in: |
Yohannes Desta [verfasserIn] Mitiku Haile [verfasserIn] Girmay Gebresamuel [verfasserIn] Mulugeta Sibhatleab [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Heliyon - Elsevier, 2016, 6(2020), 10, Seite e05234- |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2020 ; number:10 ; pages:e05234- |
Links: |
---|
DOI / URN: |
10.1016/j.heliyon.2020.e05234 |
---|
Katalog-ID: |
DOAJ053620607 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ053620607 | ||
003 | DE-627 | ||
005 | 20230308174756.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.heliyon.2020.e05234 |2 doi | |
035 | |a (DE-627)DOAJ053620607 | ||
035 | |a (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a Q1-390 | |
050 | 0 | |a H1-99 | |
100 | 0 | |a Yohannes Desta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. | ||
650 | 4 | |a Sesame residue | |
650 | 4 | |a Timing | |
650 | 4 | |a Elevation | |
650 | 4 | |a Nutrient potential | |
650 | 4 | |a Dry land farming | |
650 | 4 | |a Agricultural soil science | |
653 | 0 | |a Science (General) | |
653 | 0 | |a Social sciences (General) | |
700 | 0 | |a Mitiku Haile |e verfasserin |4 aut | |
700 | 0 | |a Girmay Gebresamuel |e verfasserin |4 aut | |
700 | 0 | |a Mulugeta Sibhatleab |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Heliyon |d Elsevier, 2016 |g 6(2020), 10, Seite e05234- |w (DE-627)835893197 |w (DE-600)2835763-2 |x 24058440 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2020 |g number:10 |g pages:e05234- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.heliyon.2020.e05234 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/40220f2998634034a07185ae6d16a8ca |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2405844020320776 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2405-8440 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2020 |e 10 |h e05234- |
author_variant |
y d yd m h mh g g gg m s ms |
---|---|
matchkey_str |
article:24058440:2020----::oetaqaiynqattassmnossmpateiuidyadetslotgaehoiapoc |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
Q |
publishDate |
2020 |
allfields |
10.1016/j.heliyon.2020.e05234 doi (DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Yohannes Desta verfasserin aut Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) Mitiku Haile verfasserin aut Girmay Gebresamuel verfasserin aut Mulugeta Sibhatleab verfasserin aut In Heliyon Elsevier, 2016 6(2020), 10, Seite e05234- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:6 year:2020 number:10 pages:e05234- https://doi.org/10.1016/j.heliyon.2020.e05234 kostenfrei https://doaj.org/article/40220f2998634034a07185ae6d16a8ca kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844020320776 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2020 10 e05234- |
spelling |
10.1016/j.heliyon.2020.e05234 doi (DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Yohannes Desta verfasserin aut Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) Mitiku Haile verfasserin aut Girmay Gebresamuel verfasserin aut Mulugeta Sibhatleab verfasserin aut In Heliyon Elsevier, 2016 6(2020), 10, Seite e05234- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:6 year:2020 number:10 pages:e05234- https://doi.org/10.1016/j.heliyon.2020.e05234 kostenfrei https://doaj.org/article/40220f2998634034a07185ae6d16a8ca kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844020320776 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2020 10 e05234- |
allfields_unstemmed |
10.1016/j.heliyon.2020.e05234 doi (DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Yohannes Desta verfasserin aut Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) Mitiku Haile verfasserin aut Girmay Gebresamuel verfasserin aut Mulugeta Sibhatleab verfasserin aut In Heliyon Elsevier, 2016 6(2020), 10, Seite e05234- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:6 year:2020 number:10 pages:e05234- https://doi.org/10.1016/j.heliyon.2020.e05234 kostenfrei https://doaj.org/article/40220f2998634034a07185ae6d16a8ca kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844020320776 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2020 10 e05234- |
allfieldsGer |
10.1016/j.heliyon.2020.e05234 doi (DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Yohannes Desta verfasserin aut Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) Mitiku Haile verfasserin aut Girmay Gebresamuel verfasserin aut Mulugeta Sibhatleab verfasserin aut In Heliyon Elsevier, 2016 6(2020), 10, Seite e05234- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:6 year:2020 number:10 pages:e05234- https://doi.org/10.1016/j.heliyon.2020.e05234 kostenfrei https://doaj.org/article/40220f2998634034a07185ae6d16a8ca kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844020320776 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2020 10 e05234- |
allfieldsSound |
10.1016/j.heliyon.2020.e05234 doi (DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Yohannes Desta verfasserin aut Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) Mitiku Haile verfasserin aut Girmay Gebresamuel verfasserin aut Mulugeta Sibhatleab verfasserin aut In Heliyon Elsevier, 2016 6(2020), 10, Seite e05234- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:6 year:2020 number:10 pages:e05234- https://doi.org/10.1016/j.heliyon.2020.e05234 kostenfrei https://doaj.org/article/40220f2998634034a07185ae6d16a8ca kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844020320776 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 6 2020 10 e05234- |
language |
English |
source |
In Heliyon 6(2020), 10, Seite e05234- volume:6 year:2020 number:10 pages:e05234- |
sourceStr |
In Heliyon 6(2020), 10, Seite e05234- volume:6 year:2020 number:10 pages:e05234- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science Science (General) Social sciences (General) |
isfreeaccess_bool |
true |
container_title |
Heliyon |
authorswithroles_txt_mv |
Yohannes Desta @@aut@@ Mitiku Haile @@aut@@ Girmay Gebresamuel @@aut@@ Mulugeta Sibhatleab @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
835893197 |
id |
DOAJ053620607 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053620607</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308174756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.heliyon.2020.e05234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053620607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40220f2998634034a07185ae6d16a8ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yohannes Desta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sesame residue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elevation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry land farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural soil science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mitiku Haile</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Girmay Gebresamuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mulugeta Sibhatleab</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Heliyon</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">6(2020), 10, Seite e05234-</subfield><subfield code="w">(DE-627)835893197</subfield><subfield code="w">(DE-600)2835763-2</subfield><subfield code="x">24058440</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:e05234-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.heliyon.2020.e05234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40220f2998634034a07185ae6d16a8ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405844020320776</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-8440</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="h">e05234-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yohannes Desta |
spellingShingle |
Yohannes Desta misc Q1-390 misc H1-99 misc Sesame residue misc Timing misc Elevation misc Nutrient potential misc Dry land farming misc Agricultural soil science misc Science (General) misc Social sciences (General) Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
authorStr |
Yohannes Desta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835893197 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
Q1-390 |
illustrated |
Not Illustrated |
issn |
24058440 |
topic_title |
Q1-390 H1-99 Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming Sesame residue Timing Elevation Nutrient potential Dry land farming Agricultural soil science |
topic |
misc Q1-390 misc H1-99 misc Sesame residue misc Timing misc Elevation misc Nutrient potential misc Dry land farming misc Agricultural soil science misc Science (General) misc Social sciences (General) |
topic_unstemmed |
misc Q1-390 misc H1-99 misc Sesame residue misc Timing misc Elevation misc Nutrient potential misc Dry land farming misc Agricultural soil science misc Science (General) misc Social sciences (General) |
topic_browse |
misc Q1-390 misc H1-99 misc Sesame residue misc Timing misc Elevation misc Nutrient potential misc Dry land farming misc Agricultural soil science misc Science (General) misc Social sciences (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Heliyon |
hierarchy_parent_id |
835893197 |
hierarchy_top_title |
Heliyon |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835893197 (DE-600)2835763-2 |
title |
Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
ctrlnum |
(DE-627)DOAJ053620607 (DE-599)DOAJ40220f2998634034a07185ae6d16a8ca |
title_full |
Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
author_sort |
Yohannes Desta |
journal |
Heliyon |
journalStr |
Heliyon |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yohannes Desta Mitiku Haile Girmay Gebresamuel Mulugeta Sibhatleab |
container_volume |
6 |
class |
Q1-390 H1-99 |
format_se |
Elektronische Aufsätze |
author-letter |
Yohannes Desta |
doi_str_mv |
10.1016/j.heliyon.2020.e05234 |
author2-role |
verfasserin |
title_sort |
potential, quality and quantity assessment of sesame plant residue in dry land vertisols of tigrai, ethiopia; approach for sustainability of dry-land farming |
callnumber |
Q1-390 |
title_auth |
Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
abstract |
In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. |
abstractGer |
In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. |
abstract_unstemmed |
In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming |
url |
https://doi.org/10.1016/j.heliyon.2020.e05234 https://doaj.org/article/40220f2998634034a07185ae6d16a8ca http://www.sciencedirect.com/science/article/pii/S2405844020320776 https://doaj.org/toc/2405-8440 |
remote_bool |
true |
author2 |
Mitiku Haile Girmay Gebresamuel Mulugeta Sibhatleab |
author2Str |
Mitiku Haile Girmay Gebresamuel Mulugeta Sibhatleab |
ppnlink |
835893197 |
callnumber-subject |
Q - General Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.heliyon.2020.e05234 |
callnumber-a |
Q1-390 |
up_date |
2024-07-03T18:40:07.524Z |
_version_ |
1803584282327777280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053620607</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308174756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.heliyon.2020.e05234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053620607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40220f2998634034a07185ae6d16a8ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yohannes Desta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential, quality and quantity assessment of sesame plant residue in dry land vertisols of Tigrai, Ethiopia; Approach for sustainability of dry-land farming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage residue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and <1050 m elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues nutrient content was performed at <650, 650–850, 850–1050, and <1050 m elevation and age of residue (fresh and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha−1. R software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha− 1 of residue was produced annually and about 0.34 Mt yr−1 of residue was harvested from sesame production. The age of residue differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78 mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6 mg B/kg for the elevation range of <650 m and <1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially produced from sesame residue were in the range of 49.4–69.6 kg N ha−1, 8.5–19.3 kg S ha−1, 8.7–10.5 kg P ha−1, 294–463 mg Zn ha−1, 1.99–2.62 g Fe ha−1, 125–342 mg Cu ha−1 and 183–214 mg B ha−1 respectively. This study clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sesame residue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elevation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry land farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural soil science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mitiku Haile</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Girmay Gebresamuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mulugeta Sibhatleab</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Heliyon</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">6(2020), 10, Seite e05234-</subfield><subfield code="w">(DE-627)835893197</subfield><subfield code="w">(DE-600)2835763-2</subfield><subfield code="x">24058440</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:e05234-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.heliyon.2020.e05234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40220f2998634034a07185ae6d16a8ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405844020320776</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-8440</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="h">e05234-</subfield></datafield></record></collection>
|
score |
7.400943 |