Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model
The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conven...
Ausführliche Beschreibung
Autor*in: |
Wang Feiyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: E3S Web of Conferences - EDP Sciences, 2013, 214, p 02040(2020) |
---|---|
Übergeordnetes Werk: |
volume:214, p 02040 ; year:2020 |
Links: |
---|
DOI / URN: |
10.1051/e3sconf/202021402040 |
---|
Katalog-ID: |
DOAJ05367152X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05367152X | ||
003 | DE-627 | ||
005 | 20230503071325.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/e3sconf/202021402040 |2 doi | |
035 | |a (DE-627)DOAJ05367152X | ||
035 | |a (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Wang Feiyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. | ||
653 | 0 | |a Environmental sciences | |
773 | 0 | 8 | |i In |t E3S Web of Conferences |d EDP Sciences, 2013 |g 214, p 02040(2020) |w (DE-627)778372081 |w (DE-600)2755680-3 |x 22671242 |7 nnns |
773 | 1 | 8 | |g volume:214, p 02040 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.1051/e3sconf/202021402040 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc |z kostenfrei |
856 | 4 | 0 | |u https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2267-1242 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 214, p 02040 |j 2020 |
author_variant |
w f wf |
---|---|
matchkey_str |
article:22671242:2020----::rdcigp0mrepieyeperlewr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
GE |
publishDate |
2020 |
allfields |
10.1051/e3sconf/202021402040 doi (DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc DE-627 ger DE-627 rakwb eng fre GE1-350 Wang Feiyu verfasserin aut Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. Environmental sciences In E3S Web of Conferences EDP Sciences, 2013 214, p 02040(2020) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:214, p 02040 year:2020 https://doi.org/10.1051/e3sconf/202021402040 kostenfrei https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 214, p 02040 2020 |
spelling |
10.1051/e3sconf/202021402040 doi (DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc DE-627 ger DE-627 rakwb eng fre GE1-350 Wang Feiyu verfasserin aut Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. Environmental sciences In E3S Web of Conferences EDP Sciences, 2013 214, p 02040(2020) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:214, p 02040 year:2020 https://doi.org/10.1051/e3sconf/202021402040 kostenfrei https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 214, p 02040 2020 |
allfields_unstemmed |
10.1051/e3sconf/202021402040 doi (DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc DE-627 ger DE-627 rakwb eng fre GE1-350 Wang Feiyu verfasserin aut Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. Environmental sciences In E3S Web of Conferences EDP Sciences, 2013 214, p 02040(2020) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:214, p 02040 year:2020 https://doi.org/10.1051/e3sconf/202021402040 kostenfrei https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 214, p 02040 2020 |
allfieldsGer |
10.1051/e3sconf/202021402040 doi (DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc DE-627 ger DE-627 rakwb eng fre GE1-350 Wang Feiyu verfasserin aut Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. Environmental sciences In E3S Web of Conferences EDP Sciences, 2013 214, p 02040(2020) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:214, p 02040 year:2020 https://doi.org/10.1051/e3sconf/202021402040 kostenfrei https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 214, p 02040 2020 |
allfieldsSound |
10.1051/e3sconf/202021402040 doi (DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc DE-627 ger DE-627 rakwb eng fre GE1-350 Wang Feiyu verfasserin aut Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. Environmental sciences In E3S Web of Conferences EDP Sciences, 2013 214, p 02040(2020) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:214, p 02040 year:2020 https://doi.org/10.1051/e3sconf/202021402040 kostenfrei https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 214, p 02040 2020 |
language |
English French |
source |
In E3S Web of Conferences 214, p 02040(2020) volume:214, p 02040 year:2020 |
sourceStr |
In E3S Web of Conferences 214, p 02040(2020) volume:214, p 02040 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental sciences |
isfreeaccess_bool |
true |
container_title |
E3S Web of Conferences |
authorswithroles_txt_mv |
Wang Feiyu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
778372081 |
id |
DOAJ05367152X |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05367152X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202021402040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05367152X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wang Feiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">214, p 02040(2020)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:214, p 02040</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202021402040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">214, p 02040</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Wang Feiyu |
spellingShingle |
Wang Feiyu misc GE1-350 misc Environmental sciences Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
authorStr |
Wang Feiyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778372081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
22671242 |
topic_title |
GE1-350 Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
topic |
misc GE1-350 misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc Environmental sciences |
topic_browse |
misc GE1-350 misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
E3S Web of Conferences |
hierarchy_parent_id |
778372081 |
hierarchy_top_title |
E3S Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778372081 (DE-600)2755680-3 |
title |
Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
ctrlnum |
(DE-627)DOAJ05367152X (DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc |
title_full |
Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
author_sort |
Wang Feiyu |
journal |
E3S Web of Conferences |
journalStr |
E3S Web of Conferences |
callnumber-first-code |
G |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Wang Feiyu |
container_volume |
214, p 02040 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang Feiyu |
doi_str_mv |
10.1051/e3sconf/202021402040 |
title_sort |
predicting s&p 500 market price by deep neural network and enemble model |
callnumber |
GE1-350 |
title_auth |
Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
abstract |
The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. |
abstractGer |
The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. |
abstract_unstemmed |
The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model |
url |
https://doi.org/10.1051/e3sconf/202021402040 https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf https://doaj.org/toc/2267-1242 |
remote_bool |
true |
ppnlink |
778372081 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/e3sconf/202021402040 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T18:56:22.734Z |
_version_ |
1803585304904335360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05367152X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202021402040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05367152X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbd3360701b3d40519c291d8380bb7fdc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wang Feiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting S&P 500 Market Price by Deep Neural Network and Enemble Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The method to predict the movement of stock market has appealed to scientists for decades. In this article, we use three different models to tackle that problem. In particular, we propose a Deep Neural Network (DNN) to predict the intraday direction of SP500 index and compare the DNN with two conventional machine learning models, i.e. linear regression, support vector machine. We demonstrate that DNN is able to predict SP500 index with relatively highest accuracy.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">214, p 02040(2020)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:214, p 02040</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202021402040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bd3360701b3d40519c291d8380bb7fdc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_02040.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">214, p 02040</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.4013834 |