Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity
Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain...
Ausführliche Beschreibung
Autor*in: |
Seyyed Hamed Fouladi [verfasserIn] Ilangko Balasingham [verfasserIn] Kimmo Kansanen [verfasserIn] Tor Audun Ramstad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
independent component analysis |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 25336-25350 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:25336-25350 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2823381 |
---|
Katalog-ID: |
DOAJ053861175 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ053861175 | ||
003 | DE-627 | ||
005 | 20230502210646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2823381 |2 doi | |
035 | |a (DE-627)DOAJ053861175 | ||
035 | |a (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Seyyed Hamed Fouladi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. | ||
650 | 4 | |a Blind source separation | |
650 | 4 | |a independent component analysis | |
650 | 4 | |a autoregressive conditional heteroscedasticity | |
650 | 4 | |a maximum likelihood | |
650 | 4 | |a Fisher’s information matrix | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Ilangko Balasingham |e verfasserin |4 aut | |
700 | 0 | |a Kimmo Kansanen |e verfasserin |4 aut | |
700 | 0 | |a Tor Audun Ramstad |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 25336-25350 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:25336-25350 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2823381 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8344792/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 25336-25350 |
author_variant |
s h f shf i b ib k k kk t a r tar |
---|---|
matchkey_str |
article:21693536:2018----::lnsucsprtouigeprlorltonnasintadod |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2823381 doi (DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d DE-627 ger DE-627 rakwb eng TK1-9971 Seyyed Hamed Fouladi verfasserin aut Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering Ilangko Balasingham verfasserin aut Kimmo Kansanen verfasserin aut Tor Audun Ramstad verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 25336-25350 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:25336-25350 https://doi.org/10.1109/ACCESS.2018.2823381 kostenfrei https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d kostenfrei https://ieeexplore.ieee.org/document/8344792/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 25336-25350 |
spelling |
10.1109/ACCESS.2018.2823381 doi (DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d DE-627 ger DE-627 rakwb eng TK1-9971 Seyyed Hamed Fouladi verfasserin aut Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering Ilangko Balasingham verfasserin aut Kimmo Kansanen verfasserin aut Tor Audun Ramstad verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 25336-25350 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:25336-25350 https://doi.org/10.1109/ACCESS.2018.2823381 kostenfrei https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d kostenfrei https://ieeexplore.ieee.org/document/8344792/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 25336-25350 |
allfields_unstemmed |
10.1109/ACCESS.2018.2823381 doi (DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d DE-627 ger DE-627 rakwb eng TK1-9971 Seyyed Hamed Fouladi verfasserin aut Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering Ilangko Balasingham verfasserin aut Kimmo Kansanen verfasserin aut Tor Audun Ramstad verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 25336-25350 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:25336-25350 https://doi.org/10.1109/ACCESS.2018.2823381 kostenfrei https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d kostenfrei https://ieeexplore.ieee.org/document/8344792/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 25336-25350 |
allfieldsGer |
10.1109/ACCESS.2018.2823381 doi (DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d DE-627 ger DE-627 rakwb eng TK1-9971 Seyyed Hamed Fouladi verfasserin aut Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering Ilangko Balasingham verfasserin aut Kimmo Kansanen verfasserin aut Tor Audun Ramstad verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 25336-25350 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:25336-25350 https://doi.org/10.1109/ACCESS.2018.2823381 kostenfrei https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d kostenfrei https://ieeexplore.ieee.org/document/8344792/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 25336-25350 |
allfieldsSound |
10.1109/ACCESS.2018.2823381 doi (DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d DE-627 ger DE-627 rakwb eng TK1-9971 Seyyed Hamed Fouladi verfasserin aut Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering Ilangko Balasingham verfasserin aut Kimmo Kansanen verfasserin aut Tor Audun Ramstad verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 25336-25350 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:25336-25350 https://doi.org/10.1109/ACCESS.2018.2823381 kostenfrei https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d kostenfrei https://ieeexplore.ieee.org/document/8344792/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 25336-25350 |
language |
English |
source |
In IEEE Access 6(2018), Seite 25336-25350 volume:6 year:2018 pages:25336-25350 |
sourceStr |
In IEEE Access 6(2018), Seite 25336-25350 volume:6 year:2018 pages:25336-25350 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Seyyed Hamed Fouladi @@aut@@ Ilangko Balasingham @@aut@@ Kimmo Kansanen @@aut@@ Tor Audun Ramstad @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ053861175 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053861175</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502210646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2823381</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053861175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Seyyed Hamed Fouladi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind source separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">independent component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autoregressive conditional heteroscedasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum likelihood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher’s information matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilangko Balasingham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kimmo Kansanen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tor Audun Ramstad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 25336-25350</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:25336-25350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2823381</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8344792/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">25336-25350</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Seyyed Hamed Fouladi |
spellingShingle |
Seyyed Hamed Fouladi misc TK1-9971 misc Blind source separation misc independent component analysis misc autoregressive conditional heteroscedasticity misc maximum likelihood misc Fisher’s information matrix misc Electrical engineering. Electronics. Nuclear engineering Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
authorStr |
Seyyed Hamed Fouladi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity Blind source separation independent component analysis autoregressive conditional heteroscedasticity maximum likelihood Fisher’s information matrix |
topic |
misc TK1-9971 misc Blind source separation misc independent component analysis misc autoregressive conditional heteroscedasticity misc maximum likelihood misc Fisher’s information matrix misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Blind source separation misc independent component analysis misc autoregressive conditional heteroscedasticity misc maximum likelihood misc Fisher’s information matrix misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Blind source separation misc independent component analysis misc autoregressive conditional heteroscedasticity misc maximum likelihood misc Fisher’s information matrix misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
ctrlnum |
(DE-627)DOAJ053861175 (DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d |
title_full |
Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
author_sort |
Seyyed Hamed Fouladi |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
25336 |
author_browse |
Seyyed Hamed Fouladi Ilangko Balasingham Kimmo Kansanen Tor Audun Ramstad |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Seyyed Hamed Fouladi |
doi_str_mv |
10.1109/ACCESS.2018.2823381 |
author2-role |
verfasserin |
title_sort |
blind source separation using temporal correlation, non-gaussianity and conditional heteroscedasticity |
callnumber |
TK1-9971 |
title_auth |
Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
abstract |
Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. |
abstractGer |
Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. |
abstract_unstemmed |
Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity |
url |
https://doi.org/10.1109/ACCESS.2018.2823381 https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d https://ieeexplore.ieee.org/document/8344792/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Ilangko Balasingham Kimmo Kansanen Tor Audun Ramstad |
author2Str |
Ilangko Balasingham Kimmo Kansanen Tor Audun Ramstad |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2823381 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:58:31.718Z |
_version_ |
1803589215037947904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ053861175</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502210646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2823381</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ053861175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1a69354fecae4f2cadf28c73607af03d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Seyyed Hamed Fouladi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blind Source Separation Using Temporal Correlation, Non-Gaussianity and Conditional Heteroscedasticity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Independent component analysis separates latent sources from a linear mixture by assuming sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian and have dependence among samples. In such case, both attributes should be considered jointly to obtain a successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregressive or moving average models with an independent and identically distributed error or residual. However, these models are limited by assuming only linear dependence among a source's samples. This paper proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared residuals' dependence. The AR part of the AR-ARCH model captures the correlation among samples. The ARCH part of the model captures the non-Gaussianity and nonlinear dependence among samples. The ARCH model also assumes the time-varying conditional variances for sources. We derive the Crameŕ Rao lower bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both synthetic and real data. The results show that the proposed method outperforms the baseline algorithms especially for a small number of samples and approaches the CRLB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blind source separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">independent component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autoregressive conditional heteroscedasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum likelihood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher’s information matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilangko Balasingham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kimmo Kansanen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tor Audun Ramstad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 25336-25350</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:25336-25350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2823381</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1a69354fecae4f2cadf28c73607af03d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8344792/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">25336-25350</subfield></datafield></record></collection>
|
score |
7.400464 |