The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome...
Ausführliche Beschreibung
Autor*in: |
Sara Del Duca [verfasserIn] Christopher Riccardi [verfasserIn] Alberto Vassallo [verfasserIn] Giulia Fontana [verfasserIn] Lara Mitia Castronovo [verfasserIn] Sofia Chioccioli [verfasserIn] Renato Fani [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microorganisms - MDPI AG, 2013, 9(2021), 7, p 1439 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:7, p 1439 |
Links: |
---|
DOI / URN: |
10.3390/microorganisms9071439 |
---|
Katalog-ID: |
DOAJ054027969 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054027969 | ||
003 | DE-627 | ||
005 | 20240412165746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/microorganisms9071439 |2 doi | |
035 | |a (DE-627)DOAJ054027969 | ||
035 | |a (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Sara Del Duca |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. | ||
650 | 4 | |a gene duplication | |
650 | 4 | |a gene fusion | |
650 | 4 | |a operon origin | |
650 | 4 | |a operon evolution | |
650 | 4 | |a regulons | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Christopher Riccardi |e verfasserin |4 aut | |
700 | 0 | |a Alberto Vassallo |e verfasserin |4 aut | |
700 | 0 | |a Giulia Fontana |e verfasserin |4 aut | |
700 | 0 | |a Lara Mitia Castronovo |e verfasserin |4 aut | |
700 | 0 | |a Sofia Chioccioli |e verfasserin |4 aut | |
700 | 0 | |a Renato Fani |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microorganisms |d MDPI AG, 2013 |g 9(2021), 7, p 1439 |w (DE-627)750370696 |w (DE-600)2720891-6 |x 20762607 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:7, p 1439 |
856 | 4 | 0 | |u https://doi.org/10.3390/microorganisms9071439 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-2607/9/7/1439 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-2607 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 7, p 1439 |
author_variant |
s d d sdd c r cr a v av g f gf l m c lmc s c sc r f rf |
---|---|
matchkey_str |
article:20762607:2021----::hhsiieisnhtceeiteuepyubceodtroohroaanooahooitisgtittev |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.3390/microorganisms9071439 doi (DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 DE-627 ger DE-627 rakwb eng QH301-705.5 Sara Del Duca verfasserin aut The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. gene duplication gene fusion operon origin operon evolution regulons Biology (General) Christopher Riccardi verfasserin aut Alberto Vassallo verfasserin aut Giulia Fontana verfasserin aut Lara Mitia Castronovo verfasserin aut Sofia Chioccioli verfasserin aut Renato Fani verfasserin aut In Microorganisms MDPI AG, 2013 9(2021), 7, p 1439 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:9 year:2021 number:7, p 1439 https://doi.org/10.3390/microorganisms9071439 kostenfrei https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 kostenfrei https://www.mdpi.com/2076-2607/9/7/1439 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 7, p 1439 |
spelling |
10.3390/microorganisms9071439 doi (DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 DE-627 ger DE-627 rakwb eng QH301-705.5 Sara Del Duca verfasserin aut The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. gene duplication gene fusion operon origin operon evolution regulons Biology (General) Christopher Riccardi verfasserin aut Alberto Vassallo verfasserin aut Giulia Fontana verfasserin aut Lara Mitia Castronovo verfasserin aut Sofia Chioccioli verfasserin aut Renato Fani verfasserin aut In Microorganisms MDPI AG, 2013 9(2021), 7, p 1439 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:9 year:2021 number:7, p 1439 https://doi.org/10.3390/microorganisms9071439 kostenfrei https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 kostenfrei https://www.mdpi.com/2076-2607/9/7/1439 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 7, p 1439 |
allfields_unstemmed |
10.3390/microorganisms9071439 doi (DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 DE-627 ger DE-627 rakwb eng QH301-705.5 Sara Del Duca verfasserin aut The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. gene duplication gene fusion operon origin operon evolution regulons Biology (General) Christopher Riccardi verfasserin aut Alberto Vassallo verfasserin aut Giulia Fontana verfasserin aut Lara Mitia Castronovo verfasserin aut Sofia Chioccioli verfasserin aut Renato Fani verfasserin aut In Microorganisms MDPI AG, 2013 9(2021), 7, p 1439 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:9 year:2021 number:7, p 1439 https://doi.org/10.3390/microorganisms9071439 kostenfrei https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 kostenfrei https://www.mdpi.com/2076-2607/9/7/1439 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 7, p 1439 |
allfieldsGer |
10.3390/microorganisms9071439 doi (DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 DE-627 ger DE-627 rakwb eng QH301-705.5 Sara Del Duca verfasserin aut The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. gene duplication gene fusion operon origin operon evolution regulons Biology (General) Christopher Riccardi verfasserin aut Alberto Vassallo verfasserin aut Giulia Fontana verfasserin aut Lara Mitia Castronovo verfasserin aut Sofia Chioccioli verfasserin aut Renato Fani verfasserin aut In Microorganisms MDPI AG, 2013 9(2021), 7, p 1439 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:9 year:2021 number:7, p 1439 https://doi.org/10.3390/microorganisms9071439 kostenfrei https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 kostenfrei https://www.mdpi.com/2076-2607/9/7/1439 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 7, p 1439 |
allfieldsSound |
10.3390/microorganisms9071439 doi (DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 DE-627 ger DE-627 rakwb eng QH301-705.5 Sara Del Duca verfasserin aut The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. gene duplication gene fusion operon origin operon evolution regulons Biology (General) Christopher Riccardi verfasserin aut Alberto Vassallo verfasserin aut Giulia Fontana verfasserin aut Lara Mitia Castronovo verfasserin aut Sofia Chioccioli verfasserin aut Renato Fani verfasserin aut In Microorganisms MDPI AG, 2013 9(2021), 7, p 1439 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:9 year:2021 number:7, p 1439 https://doi.org/10.3390/microorganisms9071439 kostenfrei https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 kostenfrei https://www.mdpi.com/2076-2607/9/7/1439 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 7, p 1439 |
language |
English |
source |
In Microorganisms 9(2021), 7, p 1439 volume:9 year:2021 number:7, p 1439 |
sourceStr |
In Microorganisms 9(2021), 7, p 1439 volume:9 year:2021 number:7, p 1439 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gene duplication gene fusion operon origin operon evolution regulons Biology (General) |
isfreeaccess_bool |
true |
container_title |
Microorganisms |
authorswithroles_txt_mv |
Sara Del Duca @@aut@@ Christopher Riccardi @@aut@@ Alberto Vassallo @@aut@@ Giulia Fontana @@aut@@ Lara Mitia Castronovo @@aut@@ Sofia Chioccioli @@aut@@ Renato Fani @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
750370696 |
id |
DOAJ054027969 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054027969</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/microorganisms9071439</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054027969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sara Del Duca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene duplication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operon origin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operon evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regulons</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Riccardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alberto Vassallo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Fontana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lara Mitia Castronovo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sofia Chioccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renato Fani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microorganisms</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 7, p 1439</subfield><subfield code="w">(DE-627)750370696</subfield><subfield code="w">(DE-600)2720891-6</subfield><subfield code="x">20762607</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 1439</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/microorganisms9071439</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-2607/9/7/1439</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-2607</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 1439</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sara Del Duca |
spellingShingle |
Sara Del Duca misc QH301-705.5 misc gene duplication misc gene fusion misc operon origin misc operon evolution misc regulons misc Biology (General) The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
authorStr |
Sara Del Duca |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750370696 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
20762607 |
topic_title |
QH301-705.5 The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization gene duplication gene fusion operon origin operon evolution regulons |
topic |
misc QH301-705.5 misc gene duplication misc gene fusion misc operon origin misc operon evolution misc regulons misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc gene duplication misc gene fusion misc operon origin misc operon evolution misc regulons misc Biology (General) |
topic_browse |
misc QH301-705.5 misc gene duplication misc gene fusion misc operon origin misc operon evolution misc regulons misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microorganisms |
hierarchy_parent_id |
750370696 |
hierarchy_top_title |
Microorganisms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750370696 (DE-600)2720891-6 |
title |
The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
ctrlnum |
(DE-627)DOAJ054027969 (DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0 |
title_full |
The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
author_sort |
Sara Del Duca |
journal |
Microorganisms |
journalStr |
Microorganisms |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Sara Del Duca Christopher Riccardi Alberto Vassallo Giulia Fontana Lara Mitia Castronovo Sofia Chioccioli Renato Fani |
container_volume |
9 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Sara Del Duca |
doi_str_mv |
10.3390/microorganisms9071439 |
author2-role |
verfasserin |
title_sort |
histidine biosynthetic genes in the superphylum bacteroidota-rhodothermota-balneolota-chlorobiota: insights into the evolution of gene structure and organization |
callnumber |
QH301-705.5 |
title_auth |
The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
abstract |
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. |
abstractGer |
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. |
abstract_unstemmed |
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 1439 |
title_short |
The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization |
url |
https://doi.org/10.3390/microorganisms9071439 https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0 https://www.mdpi.com/2076-2607/9/7/1439 https://doaj.org/toc/2076-2607 |
remote_bool |
true |
author2 |
Christopher Riccardi Alberto Vassallo Giulia Fontana Lara Mitia Castronovo Sofia Chioccioli Renato Fani |
author2Str |
Christopher Riccardi Alberto Vassallo Giulia Fontana Lara Mitia Castronovo Sofia Chioccioli Renato Fani |
ppnlink |
750370696 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/microorganisms9071439 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T20:55:10.855Z |
_version_ |
1803592779280941056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054027969</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/microorganisms9071439</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054027969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5fd0da1f90b4e29bcce5ac77dd7d6f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sara Del Duca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how <i<his</i< genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of <i<his</i< genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of <i<his</i< gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of <i<his</i< genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of <i<his</i< genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the <i<his</i< gene structure in this superphylum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene duplication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operon origin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operon evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regulons</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Riccardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alberto Vassallo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Fontana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lara Mitia Castronovo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sofia Chioccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renato Fani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microorganisms</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 7, p 1439</subfield><subfield code="w">(DE-627)750370696</subfield><subfield code="w">(DE-600)2720891-6</subfield><subfield code="x">20762607</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 1439</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/microorganisms9071439</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5fd0da1f90b4e29bcce5ac77dd7d6f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-2607/9/7/1439</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-2607</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 1439</subfield></datafield></record></collection>
|
score |
7.4010143 |