Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process
This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized...
Ausführliche Beschreibung
Autor*in: |
Mohamadreza Afrasiabi [verfasserIn] Christof Lüthi [verfasserIn] Markus Bambach [verfasserIn] Konrad Wegener [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 11(2021), 7, p 2962 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:7, p 2962 |
Links: |
---|
DOI / URN: |
10.3390/app11072962 |
---|
Katalog-ID: |
DOAJ054129516 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054129516 | ||
003 | DE-627 | ||
005 | 20240412185858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app11072962 |2 doi | |
035 | |a (DE-627)DOAJ054129516 | ||
035 | |a (DE-599)DOAJ7befca772e74485f88798f438a370fdd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Mohamadreza Afrasiabi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. | ||
650 | 4 | |a additive manufacturing | |
650 | 4 | |a LPBF | |
650 | 4 | |a numerical simulation | |
650 | 4 | |a SPH | |
650 | 4 | |a particle refinement | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Christof Lüthi |e verfasserin |4 aut | |
700 | 0 | |a Markus Bambach |e verfasserin |4 aut | |
700 | 0 | |a Konrad Wegener |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 11(2021), 7, p 2962 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:7, p 2962 |
856 | 4 | 0 | |u https://doi.org/10.3390/app11072962 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7befca772e74485f88798f438a370fdd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/11/7/2962 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 7, p 2962 |
author_variant |
m a ma c l cl m b mb k w kw |
---|---|
matchkey_str |
article:20763417:2021----::utrsltoshiuainflsrodrefsoadt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.3390/app11072962 doi (DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Mohamadreza Afrasiabi verfasserin aut Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Christof Lüthi verfasserin aut Markus Bambach verfasserin aut Konrad Wegener verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 7, p 2962 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:7, p 2962 https://doi.org/10.3390/app11072962 kostenfrei https://doaj.org/article/7befca772e74485f88798f438a370fdd kostenfrei https://www.mdpi.com/2076-3417/11/7/2962 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 7, p 2962 |
spelling |
10.3390/app11072962 doi (DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Mohamadreza Afrasiabi verfasserin aut Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Christof Lüthi verfasserin aut Markus Bambach verfasserin aut Konrad Wegener verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 7, p 2962 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:7, p 2962 https://doi.org/10.3390/app11072962 kostenfrei https://doaj.org/article/7befca772e74485f88798f438a370fdd kostenfrei https://www.mdpi.com/2076-3417/11/7/2962 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 7, p 2962 |
allfields_unstemmed |
10.3390/app11072962 doi (DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Mohamadreza Afrasiabi verfasserin aut Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Christof Lüthi verfasserin aut Markus Bambach verfasserin aut Konrad Wegener verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 7, p 2962 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:7, p 2962 https://doi.org/10.3390/app11072962 kostenfrei https://doaj.org/article/7befca772e74485f88798f438a370fdd kostenfrei https://www.mdpi.com/2076-3417/11/7/2962 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 7, p 2962 |
allfieldsGer |
10.3390/app11072962 doi (DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Mohamadreza Afrasiabi verfasserin aut Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Christof Lüthi verfasserin aut Markus Bambach verfasserin aut Konrad Wegener verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 7, p 2962 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:7, p 2962 https://doi.org/10.3390/app11072962 kostenfrei https://doaj.org/article/7befca772e74485f88798f438a370fdd kostenfrei https://www.mdpi.com/2076-3417/11/7/2962 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 7, p 2962 |
allfieldsSound |
10.3390/app11072962 doi (DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Mohamadreza Afrasiabi verfasserin aut Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Christof Lüthi verfasserin aut Markus Bambach verfasserin aut Konrad Wegener verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 7, p 2962 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:7, p 2962 https://doi.org/10.3390/app11072962 kostenfrei https://doaj.org/article/7befca772e74485f88798f438a370fdd kostenfrei https://www.mdpi.com/2076-3417/11/7/2962 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 7, p 2962 |
language |
English |
source |
In Applied Sciences 11(2021), 7, p 2962 volume:11 year:2021 number:7, p 2962 |
sourceStr |
In Applied Sciences 11(2021), 7, p 2962 volume:11 year:2021 number:7, p 2962 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
additive manufacturing LPBF numerical simulation SPH particle refinement Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Mohamadreza Afrasiabi @@aut@@ Christof Lüthi @@aut@@ Markus Bambach @@aut@@ Konrad Wegener @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ054129516 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054129516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412185858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11072962</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054129516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7befca772e74485f88798f438a370fdd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamadreza Afrasiabi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LPBF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPH</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle refinement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christof Lüthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Markus Bambach</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konrad Wegener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 7, p 2962</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 2962</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11072962</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7befca772e74485f88798f438a370fdd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/7/2962</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 2962</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mohamadreza Afrasiabi |
spellingShingle |
Mohamadreza Afrasiabi misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc additive manufacturing misc LPBF misc numerical simulation misc SPH misc particle refinement misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
authorStr |
Mohamadreza Afrasiabi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process additive manufacturing LPBF numerical simulation SPH particle refinement |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc additive manufacturing misc LPBF misc numerical simulation misc SPH misc particle refinement misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc additive manufacturing misc LPBF misc numerical simulation misc SPH misc particle refinement misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc additive manufacturing misc LPBF misc numerical simulation misc SPH misc particle refinement misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
ctrlnum |
(DE-627)DOAJ054129516 (DE-599)DOAJ7befca772e74485f88798f438a370fdd |
title_full |
Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
author_sort |
Mohamadreza Afrasiabi |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Mohamadreza Afrasiabi Christof Lüthi Markus Bambach Konrad Wegener |
container_volume |
11 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohamadreza Afrasiabi |
doi_str_mv |
10.3390/app11072962 |
author2-role |
verfasserin |
title_sort |
multi-resolution sph simulation of a laser powder bed fusion additive manufacturing process |
callnumber |
TA1-2040 |
title_auth |
Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
abstract |
This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. |
abstractGer |
This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. |
abstract_unstemmed |
This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 2962 |
title_short |
Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process |
url |
https://doi.org/10.3390/app11072962 https://doaj.org/article/7befca772e74485f88798f438a370fdd https://www.mdpi.com/2076-3417/11/7/2962 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Christof Lüthi Markus Bambach Konrad Wegener |
author2Str |
Christof Lüthi Markus Bambach Konrad Wegener |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app11072962 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T21:29:10.494Z |
_version_ |
1803594917998493696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054129516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412185858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11072962</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054129516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7befca772e74485f88798f438a370fdd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamadreza Afrasiabi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an efficient mesoscale simulation of a Laser Powder Bed Fusion (LPBF) process using the Smoothed Particle Hydrodynamics (SPH) method. The efficiency lies in reducing the computational effort via spatial adaptivity, for which a dynamic particle refinement pattern with an optimized neighbor-search algorithm is used. The melt pool dynamics is modeled by resolving the thermal, mechanical, and material fields in a single laser track application. After validating the solver by two benchmark tests where analytical and experimental data are available, we simulate a single-track LPBF process by adopting SPH in multi resolutions. The LPBF simulation results show that the proposed adaptive refinement with and without an optimized neighbor-search approach saves almost 50% and 35% of the SPH calculation time, respectively. This achievement enables several opportunities for parametric studies and running high-resolution models with less computational effort.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LPBF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPH</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle refinement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christof Lüthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Markus Bambach</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konrad Wegener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 7, p 2962</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 2962</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11072962</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7befca772e74485f88798f438a370fdd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/7/2962</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 2962</subfield></datafield></record></collection>
|
score |
7.400757 |