Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification
This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time...
Ausführliche Beschreibung
Autor*in: |
Jun Bi [verfasserIn] Ru Zhi [verfasserIn] Dong-Fan Xie [verfasserIn] Xiao-Mei Zhao [verfasserIn] Jun Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Journal of Advanced Transportation - Hindawi-Wiley, 2017, (2020) |
---|---|
Übergeordnetes Werk: |
year:2020 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2020/4680959 |
---|
Katalog-ID: |
DOAJ054178207 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054178207 | ||
003 | DE-627 | ||
005 | 20230308181447.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2020/4680959 |2 doi | |
035 | |a (DE-627)DOAJ054178207 | ||
035 | |a (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1001-1280 | |
050 | 0 | |a HE1-9990 | |
100 | 0 | |a Jun Bi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. | ||
653 | 0 | |a Transportation engineering | |
653 | 0 | |a Transportation and communications | |
700 | 0 | |a Ru Zhi |e verfasserin |4 aut | |
700 | 0 | |a Dong-Fan Xie |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Mei Zhao |e verfasserin |4 aut | |
700 | 0 | |a Jun Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Advanced Transportation |d Hindawi-Wiley, 2017 |g (2020) |w (DE-627)626054354 |w (DE-600)2553327-7 |x 20423195 |7 nnns |
773 | 1 | 8 | |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.1155/2020/4680959 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2020/4680959 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0197-6729 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2042-3195 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2020 |
author_variant |
j b jb r z rz d f x dfx x m z xmz j z jz |
---|---|
matchkey_str |
article:20423195:2020----::atrntehrceitcocrhrnuesaarvnnlssnpeit |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.1155/2020/4680959 doi (DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 DE-627 ger DE-627 rakwb eng TA1001-1280 HE1-9990 Jun Bi verfasserin aut Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. Transportation engineering Transportation and communications Ru Zhi verfasserin aut Dong-Fan Xie verfasserin aut Xiao-Mei Zhao verfasserin aut Jun Zhang verfasserin aut In Journal of Advanced Transportation Hindawi-Wiley, 2017 (2020) (DE-627)626054354 (DE-600)2553327-7 20423195 nnns year:2020 https://doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 kostenfrei http://dx.doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/toc/0197-6729 Journal toc kostenfrei https://doaj.org/toc/2042-3195 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
spelling |
10.1155/2020/4680959 doi (DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 DE-627 ger DE-627 rakwb eng TA1001-1280 HE1-9990 Jun Bi verfasserin aut Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. Transportation engineering Transportation and communications Ru Zhi verfasserin aut Dong-Fan Xie verfasserin aut Xiao-Mei Zhao verfasserin aut Jun Zhang verfasserin aut In Journal of Advanced Transportation Hindawi-Wiley, 2017 (2020) (DE-627)626054354 (DE-600)2553327-7 20423195 nnns year:2020 https://doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 kostenfrei http://dx.doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/toc/0197-6729 Journal toc kostenfrei https://doaj.org/toc/2042-3195 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfields_unstemmed |
10.1155/2020/4680959 doi (DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 DE-627 ger DE-627 rakwb eng TA1001-1280 HE1-9990 Jun Bi verfasserin aut Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. Transportation engineering Transportation and communications Ru Zhi verfasserin aut Dong-Fan Xie verfasserin aut Xiao-Mei Zhao verfasserin aut Jun Zhang verfasserin aut In Journal of Advanced Transportation Hindawi-Wiley, 2017 (2020) (DE-627)626054354 (DE-600)2553327-7 20423195 nnns year:2020 https://doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 kostenfrei http://dx.doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/toc/0197-6729 Journal toc kostenfrei https://doaj.org/toc/2042-3195 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsGer |
10.1155/2020/4680959 doi (DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 DE-627 ger DE-627 rakwb eng TA1001-1280 HE1-9990 Jun Bi verfasserin aut Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. Transportation engineering Transportation and communications Ru Zhi verfasserin aut Dong-Fan Xie verfasserin aut Xiao-Mei Zhao verfasserin aut Jun Zhang verfasserin aut In Journal of Advanced Transportation Hindawi-Wiley, 2017 (2020) (DE-627)626054354 (DE-600)2553327-7 20423195 nnns year:2020 https://doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 kostenfrei http://dx.doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/toc/0197-6729 Journal toc kostenfrei https://doaj.org/toc/2042-3195 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsSound |
10.1155/2020/4680959 doi (DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 DE-627 ger DE-627 rakwb eng TA1001-1280 HE1-9990 Jun Bi verfasserin aut Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. Transportation engineering Transportation and communications Ru Zhi verfasserin aut Dong-Fan Xie verfasserin aut Xiao-Mei Zhao verfasserin aut Jun Zhang verfasserin aut In Journal of Advanced Transportation Hindawi-Wiley, 2017 (2020) (DE-627)626054354 (DE-600)2553327-7 20423195 nnns year:2020 https://doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 kostenfrei http://dx.doi.org/10.1155/2020/4680959 kostenfrei https://doaj.org/toc/0197-6729 Journal toc kostenfrei https://doaj.org/toc/2042-3195 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
language |
English |
source |
In Journal of Advanced Transportation (2020) year:2020 |
sourceStr |
In Journal of Advanced Transportation (2020) year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transportation engineering Transportation and communications |
isfreeaccess_bool |
true |
container_title |
Journal of Advanced Transportation |
authorswithroles_txt_mv |
Jun Bi @@aut@@ Ru Zhi @@aut@@ Dong-Fan Xie @@aut@@ Xiao-Mei Zhao @@aut@@ Jun Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
626054354 |
id |
DOAJ054178207 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054178207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308181447.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2020/4680959</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054178207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jun Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ru Zhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dong-Fan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Mei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Advanced Transportation</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)626054354</subfield><subfield code="w">(DE-600)2553327-7</subfield><subfield code="x">20423195</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2020/4680959</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2020/4680959</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0197-6729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2042-3195</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jun Bi |
spellingShingle |
Jun Bi misc TA1001-1280 misc HE1-9990 misc Transportation engineering misc Transportation and communications Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
authorStr |
Jun Bi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626054354 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1001-1280 |
illustrated |
Not Illustrated |
issn |
20423195 |
topic_title |
TA1001-1280 HE1-9990 Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
topic |
misc TA1001-1280 misc HE1-9990 misc Transportation engineering misc Transportation and communications |
topic_unstemmed |
misc TA1001-1280 misc HE1-9990 misc Transportation engineering misc Transportation and communications |
topic_browse |
misc TA1001-1280 misc HE1-9990 misc Transportation engineering misc Transportation and communications |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Advanced Transportation |
hierarchy_parent_id |
626054354 |
hierarchy_top_title |
Journal of Advanced Transportation |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)626054354 (DE-600)2553327-7 |
title |
Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
ctrlnum |
(DE-627)DOAJ054178207 (DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577 |
title_full |
Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
author_sort |
Jun Bi |
journal |
Journal of Advanced Transportation |
journalStr |
Journal of Advanced Transportation |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Jun Bi Ru Zhi Dong-Fan Xie Xiao-Mei Zhao Jun Zhang |
class |
TA1001-1280 HE1-9990 |
format_se |
Elektronische Aufsätze |
author-letter |
Jun Bi |
doi_str_mv |
10.1155/2020/4680959 |
author2-role |
verfasserin |
title_sort |
capturing the characteristics of car-sharing users: data-driven analysis and prediction based on classification |
callnumber |
TA1001-1280 |
title_auth |
Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
abstract |
This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. |
abstractGer |
This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. |
abstract_unstemmed |
This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification |
url |
https://doi.org/10.1155/2020/4680959 https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577 http://dx.doi.org/10.1155/2020/4680959 https://doaj.org/toc/0197-6729 https://doaj.org/toc/2042-3195 |
remote_bool |
true |
author2 |
Ru Zhi Dong-Fan Xie Xiao-Mei Zhao Jun Zhang |
author2Str |
Ru Zhi Dong-Fan Xie Xiao-Mei Zhao Jun Zhang |
ppnlink |
626054354 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2020/4680959 |
callnumber-a |
TA1001-1280 |
up_date |
2024-07-03T21:45:59.399Z |
_version_ |
1803595975912062976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054178207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308181447.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2020/4680959</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054178207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b1d6fca8f7c43a88415047cfca65577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jun Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capturing the Characteristics of Car-Sharing Users: Data-Driven Analysis and Prediction Based on Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work explores the characteristics of the usage behaviour of station-based car-sharing users based on the actual operation data from a car-sharing company in Gansu, China. We analyse the characteristics of the users’ demands, such as usage frequency and order quantity, for a day with 24 1 h time intervals. Results show that most car-sharing users are young and middle-aged men with a low reuse rate. The distribution of users’ usage during weekdays shows noticeable morning and evening peaks. We define two attributes, namely, the latent ratio and persistence ratio, as classification indicators to understand the user diversity and heterogeneity thoroughly. We apply the k-means clustering algorithm to group the users into four categories, namely, lost, early loyal, late loyal, and motivated users. The usage characteristics of lost users, including maximum rental time and travel distance, minimum percentage of same pickup and return station, and low percentage of locals, have noticeable differences from those of the other users. Late loyal users have lower rental time and travel distance than those of the other users. This manifestation is in line with the short-term lease of shared cars to complete short- and medium-distance travel design concepts. We also propose a model that predicts the driver cluster based on the decision tree. Numerical tests indicate that the accuracy is 91.61% when the user category is predicted four months in advance using the observation-to-judgment period ratio of 3 : 1. The results in this study can support enterprises in user management.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ru Zhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dong-Fan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Mei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Advanced Transportation</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)626054354</subfield><subfield code="w">(DE-600)2553327-7</subfield><subfield code="x">20423195</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2020/4680959</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b1d6fca8f7c43a88415047cfca65577</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2020/4680959</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0197-6729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2042-3195</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.400319 |