Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping
An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without...
Ausführliche Beschreibung
Autor*in: |
Yan Zhang [verfasserIn] Meijuan Zhang [verfasserIn] Qiang Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 197059-197067 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:197059-197067 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3034491 |
---|
Katalog-ID: |
DOAJ054389895 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054389895 | ||
003 | DE-627 | ||
005 | 20230503015306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3034491 |2 doi | |
035 | |a (DE-627)DOAJ054389895 | ||
035 | |a (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yan Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. | ||
650 | 4 | |a Auto-berthing | |
650 | 4 | |a underactuated marine surface vehicle | |
650 | 4 | |a concise backstepping | |
650 | 4 | |a differential homeomorphic | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Meijuan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Qiang Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 197059-197067 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:197059-197067 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3034491 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9241728/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 197059-197067 |
author_variant |
y z yz m z mz q z qz |
---|---|
matchkey_str |
article:21693536:2020----::uoetigotoomrnsraeeilbsdn |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3034491 doi (DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Zhang verfasserin aut Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering Meijuan Zhang verfasserin aut Qiang Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 197059-197067 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:197059-197067 https://doi.org/10.1109/ACCESS.2020.3034491 kostenfrei https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 kostenfrei https://ieeexplore.ieee.org/document/9241728/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 197059-197067 |
spelling |
10.1109/ACCESS.2020.3034491 doi (DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Zhang verfasserin aut Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering Meijuan Zhang verfasserin aut Qiang Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 197059-197067 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:197059-197067 https://doi.org/10.1109/ACCESS.2020.3034491 kostenfrei https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 kostenfrei https://ieeexplore.ieee.org/document/9241728/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 197059-197067 |
allfields_unstemmed |
10.1109/ACCESS.2020.3034491 doi (DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Zhang verfasserin aut Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering Meijuan Zhang verfasserin aut Qiang Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 197059-197067 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:197059-197067 https://doi.org/10.1109/ACCESS.2020.3034491 kostenfrei https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 kostenfrei https://ieeexplore.ieee.org/document/9241728/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 197059-197067 |
allfieldsGer |
10.1109/ACCESS.2020.3034491 doi (DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Zhang verfasserin aut Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering Meijuan Zhang verfasserin aut Qiang Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 197059-197067 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:197059-197067 https://doi.org/10.1109/ACCESS.2020.3034491 kostenfrei https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 kostenfrei https://ieeexplore.ieee.org/document/9241728/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 197059-197067 |
allfieldsSound |
10.1109/ACCESS.2020.3034491 doi (DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Zhang verfasserin aut Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering Meijuan Zhang verfasserin aut Qiang Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 197059-197067 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:197059-197067 https://doi.org/10.1109/ACCESS.2020.3034491 kostenfrei https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 kostenfrei https://ieeexplore.ieee.org/document/9241728/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 197059-197067 |
language |
English |
source |
In IEEE Access 8(2020), Seite 197059-197067 volume:8 year:2020 pages:197059-197067 |
sourceStr |
In IEEE Access 8(2020), Seite 197059-197067 volume:8 year:2020 pages:197059-197067 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yan Zhang @@aut@@ Meijuan Zhang @@aut@@ Qiang Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ054389895 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054389895</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503015306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3034491</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054389895</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Auto-berthing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underactuated marine surface vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concise backstepping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential homeomorphic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meijuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 197059-197067</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:197059-197067</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3034491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9241728/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">197059-197067</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yan Zhang |
spellingShingle |
Yan Zhang misc TK1-9971 misc Auto-berthing misc underactuated marine surface vehicle misc concise backstepping misc differential homeomorphic misc Electrical engineering. Electronics. Nuclear engineering Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
authorStr |
Yan Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping Auto-berthing underactuated marine surface vehicle concise backstepping differential homeomorphic |
topic |
misc TK1-9971 misc Auto-berthing misc underactuated marine surface vehicle misc concise backstepping misc differential homeomorphic misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Auto-berthing misc underactuated marine surface vehicle misc concise backstepping misc differential homeomorphic misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Auto-berthing misc underactuated marine surface vehicle misc concise backstepping misc differential homeomorphic misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
ctrlnum |
(DE-627)DOAJ054389895 (DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085 |
title_full |
Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
author_sort |
Yan Zhang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
197059 |
author_browse |
Yan Zhang Meijuan Zhang Qiang Zhang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yan Zhang |
doi_str_mv |
10.1109/ACCESS.2020.3034491 |
author2-role |
verfasserin |
title_sort |
auto-berthing control of marine surface vehicle based on concise backstepping |
callnumber |
TK1-9971 |
title_auth |
Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
abstract |
An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. |
abstractGer |
An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. |
abstract_unstemmed |
An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping |
url |
https://doi.org/10.1109/ACCESS.2020.3034491 https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085 https://ieeexplore.ieee.org/document/9241728/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Meijuan Zhang Qiang Zhang |
author2Str |
Meijuan Zhang Qiang Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3034491 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T22:52:57.775Z |
_version_ |
1803600189482598400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054389895</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503015306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3034491</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054389895</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3cd8a762e655467fafc8b8b85c36a085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Auto-Berthing Control of Marine Surface Vehicle Based on Concise Backstepping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An auto-berthing control strategy for 3-DOF (degrees of freedom) underactuated marine surface vehicles based on concise backstepping is presented in this paper. Firstly, differential homeomorphic method is used to simplify and make the 3-DOF underactuated marine surface vehicle motion model without external disturbances and model uncertainties has the structure of the general nonlinear system. Then, an auto-berthing controller for the transformed marine surface vehicle model is designed based on the backstepping, dynamic surface control (DSC) technology and Lyapunov direct method. The concise backstepping method can not only simplify the design process of the nonlinear controller but decrease the number of design parameters. Further, in order to illustrate the robustness of the designed controller, simulation experiments are carried out under the external disturbances. Theoretical analysis is provided to prove that the designed controller has a concise structure and is easy to implement in engineering. In addition, it can ensure that all signals of the system are bounded. Simulation results illustrate the effectiveness of the developed control scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Auto-berthing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underactuated marine surface vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concise backstepping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential homeomorphic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meijuan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 197059-197067</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:197059-197067</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3034491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3cd8a762e655467fafc8b8b85c36a085</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9241728/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">197059-197067</subfield></datafield></record></collection>
|
score |
7.401886 |