Molecular profiling of non-small cell lung cancer.
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target t...
Ausführliche Beschreibung
Autor*in: |
Marika L Forsythe [verfasserIn] Akram Alwithenani [verfasserIn] Drew Bethune [verfasserIn] Mathieu Castonguay [verfasserIn] Arik Drucker [verfasserIn] Gordon Flowerdew [verfasserIn] Daniel French [verfasserIn] John Fris [verfasserIn] Wenda Greer [verfasserIn] Harry Henteleff [verfasserIn] Mary MacNeil [verfasserIn] Paola Marignani [verfasserIn] Wojciech Morzycki [verfasserIn] Madelaine Plourde [verfasserIn] Stephanie Snow [verfasserIn] Zhaolin Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 15(2020), 8, p e0236580 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2020 ; number:8, p e0236580 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0236580 |
---|
Katalog-ID: |
DOAJ054737893 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054737893 | ||
003 | DE-627 | ||
005 | 20230308183951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0236580 |2 doi | |
035 | |a (DE-627)DOAJ054737893 | ||
035 | |a (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Marika L Forsythe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Molecular profiling of non-small cell lung cancer. |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Akram Alwithenani |e verfasserin |4 aut | |
700 | 0 | |a Drew Bethune |e verfasserin |4 aut | |
700 | 0 | |a Mathieu Castonguay |e verfasserin |4 aut | |
700 | 0 | |a Arik Drucker |e verfasserin |4 aut | |
700 | 0 | |a Gordon Flowerdew |e verfasserin |4 aut | |
700 | 0 | |a Daniel French |e verfasserin |4 aut | |
700 | 0 | |a John Fris |e verfasserin |4 aut | |
700 | 0 | |a Wenda Greer |e verfasserin |4 aut | |
700 | 0 | |a Harry Henteleff |e verfasserin |4 aut | |
700 | 0 | |a Mary MacNeil |e verfasserin |4 aut | |
700 | 0 | |a Paola Marignani |e verfasserin |4 aut | |
700 | 0 | |a Wojciech Morzycki |e verfasserin |4 aut | |
700 | 0 | |a Madelaine Plourde |e verfasserin |4 aut | |
700 | 0 | |a Stephanie Snow |e verfasserin |4 aut | |
700 | 0 | |a Zhaolin Xu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 15(2020), 8, p e0236580 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2020 |g number:8, p e0236580 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0236580 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0236580 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2020 |e 8, p e0236580 |
author_variant |
m l f mlf a a aa d b db m c mc a d ad g f gf d f df j f jf w g wg h h hh m m mm p m pm w m wm m p mp s s ss z x zx |
---|---|
matchkey_str |
article:19326203:2020----::oeuapoiigfosale |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1371/journal.pone.0236580 doi (DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 DE-627 ger DE-627 rakwb eng Marika L Forsythe verfasserin aut Molecular profiling of non-small cell lung cancer. 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. Medicine R Science Q Akram Alwithenani verfasserin aut Drew Bethune verfasserin aut Mathieu Castonguay verfasserin aut Arik Drucker verfasserin aut Gordon Flowerdew verfasserin aut Daniel French verfasserin aut John Fris verfasserin aut Wenda Greer verfasserin aut Harry Henteleff verfasserin aut Mary MacNeil verfasserin aut Paola Marignani verfasserin aut Wojciech Morzycki verfasserin aut Madelaine Plourde verfasserin aut Stephanie Snow verfasserin aut Zhaolin Xu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 15(2020), 8, p e0236580 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:15 year:2020 number:8, p e0236580 https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 kostenfrei https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 8, p e0236580 |
spelling |
10.1371/journal.pone.0236580 doi (DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 DE-627 ger DE-627 rakwb eng Marika L Forsythe verfasserin aut Molecular profiling of non-small cell lung cancer. 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. Medicine R Science Q Akram Alwithenani verfasserin aut Drew Bethune verfasserin aut Mathieu Castonguay verfasserin aut Arik Drucker verfasserin aut Gordon Flowerdew verfasserin aut Daniel French verfasserin aut John Fris verfasserin aut Wenda Greer verfasserin aut Harry Henteleff verfasserin aut Mary MacNeil verfasserin aut Paola Marignani verfasserin aut Wojciech Morzycki verfasserin aut Madelaine Plourde verfasserin aut Stephanie Snow verfasserin aut Zhaolin Xu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 15(2020), 8, p e0236580 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:15 year:2020 number:8, p e0236580 https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 kostenfrei https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 8, p e0236580 |
allfields_unstemmed |
10.1371/journal.pone.0236580 doi (DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 DE-627 ger DE-627 rakwb eng Marika L Forsythe verfasserin aut Molecular profiling of non-small cell lung cancer. 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. Medicine R Science Q Akram Alwithenani verfasserin aut Drew Bethune verfasserin aut Mathieu Castonguay verfasserin aut Arik Drucker verfasserin aut Gordon Flowerdew verfasserin aut Daniel French verfasserin aut John Fris verfasserin aut Wenda Greer verfasserin aut Harry Henteleff verfasserin aut Mary MacNeil verfasserin aut Paola Marignani verfasserin aut Wojciech Morzycki verfasserin aut Madelaine Plourde verfasserin aut Stephanie Snow verfasserin aut Zhaolin Xu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 15(2020), 8, p e0236580 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:15 year:2020 number:8, p e0236580 https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 kostenfrei https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 8, p e0236580 |
allfieldsGer |
10.1371/journal.pone.0236580 doi (DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 DE-627 ger DE-627 rakwb eng Marika L Forsythe verfasserin aut Molecular profiling of non-small cell lung cancer. 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. Medicine R Science Q Akram Alwithenani verfasserin aut Drew Bethune verfasserin aut Mathieu Castonguay verfasserin aut Arik Drucker verfasserin aut Gordon Flowerdew verfasserin aut Daniel French verfasserin aut John Fris verfasserin aut Wenda Greer verfasserin aut Harry Henteleff verfasserin aut Mary MacNeil verfasserin aut Paola Marignani verfasserin aut Wojciech Morzycki verfasserin aut Madelaine Plourde verfasserin aut Stephanie Snow verfasserin aut Zhaolin Xu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 15(2020), 8, p e0236580 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:15 year:2020 number:8, p e0236580 https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 kostenfrei https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 8, p e0236580 |
allfieldsSound |
10.1371/journal.pone.0236580 doi (DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 DE-627 ger DE-627 rakwb eng Marika L Forsythe verfasserin aut Molecular profiling of non-small cell lung cancer. 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. Medicine R Science Q Akram Alwithenani verfasserin aut Drew Bethune verfasserin aut Mathieu Castonguay verfasserin aut Arik Drucker verfasserin aut Gordon Flowerdew verfasserin aut Daniel French verfasserin aut John Fris verfasserin aut Wenda Greer verfasserin aut Harry Henteleff verfasserin aut Mary MacNeil verfasserin aut Paola Marignani verfasserin aut Wojciech Morzycki verfasserin aut Madelaine Plourde verfasserin aut Stephanie Snow verfasserin aut Zhaolin Xu verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 15(2020), 8, p e0236580 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:15 year:2020 number:8, p e0236580 https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 kostenfrei https://doi.org/10.1371/journal.pone.0236580 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 8, p e0236580 |
language |
English |
source |
In PLoS ONE 15(2020), 8, p e0236580 volume:15 year:2020 number:8, p e0236580 |
sourceStr |
In PLoS ONE 15(2020), 8, p e0236580 volume:15 year:2020 number:8, p e0236580 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Marika L Forsythe @@aut@@ Akram Alwithenani @@aut@@ Drew Bethune @@aut@@ Mathieu Castonguay @@aut@@ Arik Drucker @@aut@@ Gordon Flowerdew @@aut@@ Daniel French @@aut@@ John Fris @@aut@@ Wenda Greer @@aut@@ Harry Henteleff @@aut@@ Mary MacNeil @@aut@@ Paola Marignani @@aut@@ Wojciech Morzycki @@aut@@ Madelaine Plourde @@aut@@ Stephanie Snow @@aut@@ Zhaolin Xu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ054737893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054737893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308183951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0236580</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054737893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd358aab1202849d2b0953d9c467d7576</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marika L Forsythe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular profiling of non-small cell lung cancer.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akram Alwithenani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Drew Bethune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathieu Castonguay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arik Drucker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gordon Flowerdew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel French</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Fris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenda Greer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Henteleff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mary MacNeil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Marignani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wojciech Morzycki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Madelaine Plourde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie Snow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaolin Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">15(2020), 8, p e0236580</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8, p e0236580</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0236580</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d358aab1202849d2b0953d9c467d7576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0236580</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2020</subfield><subfield code="e">8, p e0236580</subfield></datafield></record></collection>
|
author |
Marika L Forsythe |
spellingShingle |
Marika L Forsythe misc Medicine misc R misc Science misc Q Molecular profiling of non-small cell lung cancer. |
authorStr |
Marika L Forsythe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Molecular profiling of non-small cell lung cancer |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Molecular profiling of non-small cell lung cancer. |
ctrlnum |
(DE-627)DOAJ054737893 (DE-599)DOAJd358aab1202849d2b0953d9c467d7576 |
title_full |
Molecular profiling of non-small cell lung cancer |
author_sort |
Marika L Forsythe |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Marika L Forsythe Akram Alwithenani Drew Bethune Mathieu Castonguay Arik Drucker Gordon Flowerdew Daniel French John Fris Wenda Greer Harry Henteleff Mary MacNeil Paola Marignani Wojciech Morzycki Madelaine Plourde Stephanie Snow Zhaolin Xu |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Marika L Forsythe |
doi_str_mv |
10.1371/journal.pone.0236580 |
author2-role |
verfasserin |
title_sort |
molecular profiling of non-small cell lung cancer |
title_auth |
Molecular profiling of non-small cell lung cancer. |
abstract |
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. |
abstractGer |
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. |
abstract_unstemmed |
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p e0236580 |
title_short |
Molecular profiling of non-small cell lung cancer. |
url |
https://doi.org/10.1371/journal.pone.0236580 https://doaj.org/article/d358aab1202849d2b0953d9c467d7576 https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Akram Alwithenani Drew Bethune Mathieu Castonguay Arik Drucker Gordon Flowerdew Daniel French John Fris Wenda Greer Harry Henteleff Mary MacNeil Paola Marignani Wojciech Morzycki Madelaine Plourde Stephanie Snow Zhaolin Xu |
author2Str |
Akram Alwithenani Drew Bethune Mathieu Castonguay Arik Drucker Gordon Flowerdew Daniel French John Fris Wenda Greer Harry Henteleff Mary MacNeil Paola Marignani Wojciech Morzycki Madelaine Plourde Stephanie Snow Zhaolin Xu |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0236580 |
up_date |
2024-07-04T00:24:06.929Z |
_version_ |
1803605924309368832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054737893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308183951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0236580</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054737893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd358aab1202849d2b0953d9c467d7576</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marika L Forsythe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular profiling of non-small cell lung cancer.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, including EGFR, KRAS, BRAF, PIK3CA, HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions. ALK was evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being the KRAS mutation (24.49% vs. 35.55%), followed by EGFR (6.96% vs. 10.23%), PIK3CA (1.20% vs. 0.9%), BRAF (1.08% vs. 1.62%), ALK (0.12% vs. 0.18%), while the lowest was the HER2 mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akram Alwithenani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Drew Bethune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathieu Castonguay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arik Drucker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gordon Flowerdew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel French</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Fris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenda Greer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Henteleff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mary MacNeil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Marignani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wojciech Morzycki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Madelaine Plourde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie Snow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaolin Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">15(2020), 8, p e0236580</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8, p e0236580</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0236580</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d358aab1202849d2b0953d9c467d7576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0236580</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2020</subfield><subfield code="e">8, p e0236580</subfield></datafield></record></collection>
|
score |
7.4027834 |