Tangent Lines and Lipschitz Differentiability Spaces
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differenti...
Ausführliche Beschreibung
Autor*in: |
Cavalletti Fabio [verfasserIn] Rajala Tapio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Analysis and Geometry in Metric Spaces - De Gruyter, 2015, 4(2016), 1 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2016 ; number:1 |
Links: |
---|
DOI / URN: |
10.1515/agms-2016-0004 |
---|
Katalog-ID: |
DOAJ054770149 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054770149 | ||
003 | DE-627 | ||
005 | 20230308184118.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/agms-2016-0004 |2 doi | |
035 | |a (DE-627)DOAJ054770149 | ||
035 | |a (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Cavalletti Fabio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tangent Lines and Lipschitz Differentiability Spaces |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. | ||
650 | 4 | |a metric geometry | |
650 | 4 | |a lipschitz differentiability spaces | |
650 | 4 | |a tangent of metric spaces | |
650 | 4 | |a ricci curvature | |
653 | 0 | |a Analysis | |
700 | 0 | |a Rajala Tapio |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Analysis and Geometry in Metric Spaces |d De Gruyter, 2015 |g 4(2016), 1 |w (DE-627)777285061 |w (DE-600)2753702-X |x 22993274 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2016 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1515/agms-2016-0004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/agms-2016-0004 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2299-3274 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2016 |e 1 |
author_variant |
c f cf r t rt |
---|---|
matchkey_str |
article:22993274:2016----::agnlnsnlpcizifrn |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
10.1515/agms-2016-0004 doi (DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 DE-627 ger DE-627 rakwb eng QA299.6-433 Cavalletti Fabio verfasserin aut Tangent Lines and Lipschitz Differentiability Spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 4(2016), 1 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:4 year:2016 number:1 https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 kostenfrei https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 1 |
spelling |
10.1515/agms-2016-0004 doi (DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 DE-627 ger DE-627 rakwb eng QA299.6-433 Cavalletti Fabio verfasserin aut Tangent Lines and Lipschitz Differentiability Spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 4(2016), 1 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:4 year:2016 number:1 https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 kostenfrei https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 1 |
allfields_unstemmed |
10.1515/agms-2016-0004 doi (DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 DE-627 ger DE-627 rakwb eng QA299.6-433 Cavalletti Fabio verfasserin aut Tangent Lines and Lipschitz Differentiability Spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 4(2016), 1 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:4 year:2016 number:1 https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 kostenfrei https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 1 |
allfieldsGer |
10.1515/agms-2016-0004 doi (DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 DE-627 ger DE-627 rakwb eng QA299.6-433 Cavalletti Fabio verfasserin aut Tangent Lines and Lipschitz Differentiability Spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 4(2016), 1 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:4 year:2016 number:1 https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 kostenfrei https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 1 |
allfieldsSound |
10.1515/agms-2016-0004 doi (DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 DE-627 ger DE-627 rakwb eng QA299.6-433 Cavalletti Fabio verfasserin aut Tangent Lines and Lipschitz Differentiability Spaces 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 4(2016), 1 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:4 year:2016 number:1 https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 kostenfrei https://doi.org/10.1515/agms-2016-0004 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 1 |
language |
English |
source |
In Analysis and Geometry in Metric Spaces 4(2016), 1 volume:4 year:2016 number:1 |
sourceStr |
In Analysis and Geometry in Metric Spaces 4(2016), 1 volume:4 year:2016 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature Analysis |
isfreeaccess_bool |
true |
container_title |
Analysis and Geometry in Metric Spaces |
authorswithroles_txt_mv |
Cavalletti Fabio @@aut@@ Rajala Tapio @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
777285061 |
id |
DOAJ054770149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054770149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308184118.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/agms-2016-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054770149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cavalletti Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tangent Lines and Lipschitz Differentiability Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metric geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lipschitz differentiability spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tangent of metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ricci curvature</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajala Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analysis and Geometry in Metric Spaces</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">4(2016), 1</subfield><subfield code="w">(DE-627)777285061</subfield><subfield code="w">(DE-600)2753702-X</subfield><subfield code="x">22993274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2016-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2016-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3274</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Cavalletti Fabio |
spellingShingle |
Cavalletti Fabio misc QA299.6-433 misc metric geometry misc lipschitz differentiability spaces misc tangent of metric spaces misc ricci curvature misc Analysis Tangent Lines and Lipschitz Differentiability Spaces |
authorStr |
Cavalletti Fabio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777285061 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
22993274 |
topic_title |
QA299.6-433 Tangent Lines and Lipschitz Differentiability Spaces metric geometry lipschitz differentiability spaces tangent of metric spaces ricci curvature |
topic |
misc QA299.6-433 misc metric geometry misc lipschitz differentiability spaces misc tangent of metric spaces misc ricci curvature misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc metric geometry misc lipschitz differentiability spaces misc tangent of metric spaces misc ricci curvature misc Analysis |
topic_browse |
misc QA299.6-433 misc metric geometry misc lipschitz differentiability spaces misc tangent of metric spaces misc ricci curvature misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Analysis and Geometry in Metric Spaces |
hierarchy_parent_id |
777285061 |
hierarchy_top_title |
Analysis and Geometry in Metric Spaces |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777285061 (DE-600)2753702-X |
title |
Tangent Lines and Lipschitz Differentiability Spaces |
ctrlnum |
(DE-627)DOAJ054770149 (DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5 |
title_full |
Tangent Lines and Lipschitz Differentiability Spaces |
author_sort |
Cavalletti Fabio |
journal |
Analysis and Geometry in Metric Spaces |
journalStr |
Analysis and Geometry in Metric Spaces |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Cavalletti Fabio Rajala Tapio |
container_volume |
4 |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Cavalletti Fabio |
doi_str_mv |
10.1515/agms-2016-0004 |
author2-role |
verfasserin |
title_sort |
tangent lines and lipschitz differentiability spaces |
callnumber |
QA299.6-433 |
title_auth |
Tangent Lines and Lipschitz Differentiability Spaces |
abstract |
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. |
abstractGer |
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. |
abstract_unstemmed |
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Tangent Lines and Lipschitz Differentiability Spaces |
url |
https://doi.org/10.1515/agms-2016-0004 https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5 https://doaj.org/toc/2299-3274 |
remote_bool |
true |
author2 |
Rajala Tapio |
author2Str |
Rajala Tapio |
ppnlink |
777285061 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/agms-2016-0004 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-04T00:31:43.228Z |
_version_ |
1803606402782986240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054770149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308184118.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/agms-2016-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054770149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f7d0215b35649b7804f0020319be0f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cavalletti Fabio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tangent Lines and Lipschitz Differentiability Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metric geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lipschitz differentiability spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tangent of metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ricci curvature</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajala Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analysis and Geometry in Metric Spaces</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">4(2016), 1</subfield><subfield code="w">(DE-627)777285061</subfield><subfield code="w">(DE-600)2753702-X</subfield><subfield code="x">22993274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2016-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f7d0215b35649b7804f0020319be0f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2016-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3274</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.401457 |