Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SA...
Ausführliche Beschreibung
Autor*in: |
Wen Chen [verfasserIn] Linwei Zhang [verfasserIn] Shangshu Yang [verfasserIn] Wenhan Jia [verfasserIn] Songsong Zhang [verfasserIn] Yuandong Gu [verfasserIn] Liang Lou [verfasserIn] Guoqiang Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
quasi-surface acoustic wave (QSAW) resonator |
---|
Übergeordnetes Werk: |
In: Micromachines - MDPI AG, 2010, 12(2021), 9, p 1118 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:9, p 1118 |
Links: |
---|
DOI / URN: |
10.3390/mi12091118 |
---|
Katalog-ID: |
DOAJ054807247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054807247 | ||
003 | DE-627 | ||
005 | 20240412160308.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/mi12091118 |2 doi | |
035 | |a (DE-627)DOAJ054807247 | ||
035 | |a (DE-599)DOAJ81611945cb63499f867ec2deb5480872 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Wen Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. | ||
650 | 4 | |a quasi-surface acoustic wave (QSAW) resonator | |
650 | 4 | |a microelectromechnical systems (MEMS) | |
650 | 4 | |a finite element analysis | |
650 | 4 | |a aluminum nitride | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Linwei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shangshu Yang |e verfasserin |4 aut | |
700 | 0 | |a Wenhan Jia |e verfasserin |4 aut | |
700 | 0 | |a Songsong Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yuandong Gu |e verfasserin |4 aut | |
700 | 0 | |a Liang Lou |e verfasserin |4 aut | |
700 | 0 | |a Guoqiang Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Micromachines |d MDPI AG, 2010 |g 12(2021), 9, p 1118 |w (DE-627)665016069 |w (DE-600)2620864-7 |x 2072666X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:9, p 1118 |
856 | 4 | 0 | |u https://doi.org/10.3390/mi12091118 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/81611945cb63499f867ec2deb5480872 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-666X/12/9/1118 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-666X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 9, p 1118 |
author_variant |
w c wc l z lz s y sy w j wj s z sz y g yg l l ll g w gw |
---|---|
matchkey_str |
article:2072666X:2021----::hedmninliielmnaayiadhrceiainfussra |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TJ |
publishDate |
2021 |
allfields |
10.3390/mi12091118 doi (DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 DE-627 ger DE-627 rakwb eng TJ1-1570 Wen Chen verfasserin aut Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery Linwei Zhang verfasserin aut Shangshu Yang verfasserin aut Wenhan Jia verfasserin aut Songsong Zhang verfasserin aut Yuandong Gu verfasserin aut Liang Lou verfasserin aut Guoqiang Wu verfasserin aut In Micromachines MDPI AG, 2010 12(2021), 9, p 1118 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:12 year:2021 number:9, p 1118 https://doi.org/10.3390/mi12091118 kostenfrei https://doaj.org/article/81611945cb63499f867ec2deb5480872 kostenfrei https://www.mdpi.com/2072-666X/12/9/1118 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1118 |
spelling |
10.3390/mi12091118 doi (DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 DE-627 ger DE-627 rakwb eng TJ1-1570 Wen Chen verfasserin aut Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery Linwei Zhang verfasserin aut Shangshu Yang verfasserin aut Wenhan Jia verfasserin aut Songsong Zhang verfasserin aut Yuandong Gu verfasserin aut Liang Lou verfasserin aut Guoqiang Wu verfasserin aut In Micromachines MDPI AG, 2010 12(2021), 9, p 1118 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:12 year:2021 number:9, p 1118 https://doi.org/10.3390/mi12091118 kostenfrei https://doaj.org/article/81611945cb63499f867ec2deb5480872 kostenfrei https://www.mdpi.com/2072-666X/12/9/1118 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1118 |
allfields_unstemmed |
10.3390/mi12091118 doi (DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 DE-627 ger DE-627 rakwb eng TJ1-1570 Wen Chen verfasserin aut Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery Linwei Zhang verfasserin aut Shangshu Yang verfasserin aut Wenhan Jia verfasserin aut Songsong Zhang verfasserin aut Yuandong Gu verfasserin aut Liang Lou verfasserin aut Guoqiang Wu verfasserin aut In Micromachines MDPI AG, 2010 12(2021), 9, p 1118 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:12 year:2021 number:9, p 1118 https://doi.org/10.3390/mi12091118 kostenfrei https://doaj.org/article/81611945cb63499f867ec2deb5480872 kostenfrei https://www.mdpi.com/2072-666X/12/9/1118 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1118 |
allfieldsGer |
10.3390/mi12091118 doi (DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 DE-627 ger DE-627 rakwb eng TJ1-1570 Wen Chen verfasserin aut Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery Linwei Zhang verfasserin aut Shangshu Yang verfasserin aut Wenhan Jia verfasserin aut Songsong Zhang verfasserin aut Yuandong Gu verfasserin aut Liang Lou verfasserin aut Guoqiang Wu verfasserin aut In Micromachines MDPI AG, 2010 12(2021), 9, p 1118 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:12 year:2021 number:9, p 1118 https://doi.org/10.3390/mi12091118 kostenfrei https://doaj.org/article/81611945cb63499f867ec2deb5480872 kostenfrei https://www.mdpi.com/2072-666X/12/9/1118 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1118 |
allfieldsSound |
10.3390/mi12091118 doi (DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 DE-627 ger DE-627 rakwb eng TJ1-1570 Wen Chen verfasserin aut Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery Linwei Zhang verfasserin aut Shangshu Yang verfasserin aut Wenhan Jia verfasserin aut Songsong Zhang verfasserin aut Yuandong Gu verfasserin aut Liang Lou verfasserin aut Guoqiang Wu verfasserin aut In Micromachines MDPI AG, 2010 12(2021), 9, p 1118 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:12 year:2021 number:9, p 1118 https://doi.org/10.3390/mi12091118 kostenfrei https://doaj.org/article/81611945cb63499f867ec2deb5480872 kostenfrei https://www.mdpi.com/2072-666X/12/9/1118 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1118 |
language |
English |
source |
In Micromachines 12(2021), 9, p 1118 volume:12 year:2021 number:9, p 1118 |
sourceStr |
In Micromachines 12(2021), 9, p 1118 volume:12 year:2021 number:9, p 1118 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Micromachines |
authorswithroles_txt_mv |
Wen Chen @@aut@@ Linwei Zhang @@aut@@ Shangshu Yang @@aut@@ Wenhan Jia @@aut@@ Songsong Zhang @@aut@@ Yuandong Gu @@aut@@ Liang Lou @@aut@@ Guoqiang Wu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
665016069 |
id |
DOAJ054807247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054807247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412160308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi12091118</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054807247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81611945cb63499f867ec2deb5480872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasi-surface acoustic wave (QSAW) resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microelectromechnical systems (MEMS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum nitride</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangshu Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenhan Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuandong Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoqiang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2021), 9, p 1118</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1118</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi12091118</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81611945cb63499f867ec2deb5480872</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/12/9/1118</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1118</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Wen Chen |
spellingShingle |
Wen Chen misc TJ1-1570 misc quasi-surface acoustic wave (QSAW) resonator misc microelectromechnical systems (MEMS) misc finite element analysis misc aluminum nitride misc Mechanical engineering and machinery Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
authorStr |
Wen Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)665016069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
2072666X |
topic_title |
TJ1-1570 Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators quasi-surface acoustic wave (QSAW) resonator microelectromechnical systems (MEMS) finite element analysis aluminum nitride |
topic |
misc TJ1-1570 misc quasi-surface acoustic wave (QSAW) resonator misc microelectromechnical systems (MEMS) misc finite element analysis misc aluminum nitride misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc quasi-surface acoustic wave (QSAW) resonator misc microelectromechnical systems (MEMS) misc finite element analysis misc aluminum nitride misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc quasi-surface acoustic wave (QSAW) resonator misc microelectromechnical systems (MEMS) misc finite element analysis misc aluminum nitride misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Micromachines |
hierarchy_parent_id |
665016069 |
hierarchy_top_title |
Micromachines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)665016069 (DE-600)2620864-7 |
title |
Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
ctrlnum |
(DE-627)DOAJ054807247 (DE-599)DOAJ81611945cb63499f867ec2deb5480872 |
title_full |
Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
author_sort |
Wen Chen |
journal |
Micromachines |
journalStr |
Micromachines |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wen Chen Linwei Zhang Shangshu Yang Wenhan Jia Songsong Zhang Yuandong Gu Liang Lou Guoqiang Wu |
container_volume |
12 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen Chen |
doi_str_mv |
10.3390/mi12091118 |
author2-role |
verfasserin |
title_sort |
three-dimensional finite element analysis and characterization of quasi-surface acoustic wave resonators |
callnumber |
TJ1-1570 |
title_auth |
Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
abstract |
In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. |
abstractGer |
In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. |
abstract_unstemmed |
In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1118 |
title_short |
Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators |
url |
https://doi.org/10.3390/mi12091118 https://doaj.org/article/81611945cb63499f867ec2deb5480872 https://www.mdpi.com/2072-666X/12/9/1118 https://doaj.org/toc/2072-666X |
remote_bool |
true |
author2 |
Linwei Zhang Shangshu Yang Wenhan Jia Songsong Zhang Yuandong Gu Liang Lou Guoqiang Wu |
author2Str |
Linwei Zhang Shangshu Yang Wenhan Jia Songsong Zhang Yuandong Gu Liang Lou Guoqiang Wu |
ppnlink |
665016069 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/mi12091118 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-04T00:40:50.389Z |
_version_ |
1803606976513441792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054807247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412160308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi12091118</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054807247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81611945cb63499f867ec2deb5480872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula<), effective coupling coefficient (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula<) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msubsup<<mi<k</mi<<mrow<<mi<e</mi<<mi<f</mi<<mi<f</mi<</mrow<<mn<2</mn<</msubsup<</semantics<</math<</inline-formula< of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<T</mi<<mi<C</mi<<mi<F</mi<</mrow<</semantics<</math<</inline-formula< of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mi mathvariant="sans-serif"<μ</mi<</semantics<</math<</inline-formula<m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasi-surface acoustic wave (QSAW) resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microelectromechnical systems (MEMS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum nitride</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangshu Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenhan Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuandong Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoqiang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2021), 9, p 1118</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1118</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi12091118</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81611945cb63499f867ec2deb5480872</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/12/9/1118</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1118</subfield></datafield></record></collection>
|
score |
7.399102 |