Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure
In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the e...
Ausführliche Beschreibung
Autor*in: |
Qing Liu [verfasserIn] Danyang Yao [verfasserIn] Yan Liu [verfasserIn] Xinyi Liu [verfasserIn] Yong Zhang [verfasserIn] Genquan Han [verfasserIn] Yue Hao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Photonics Journal - IEEE, 2015, 13(2021), 6, Seite 7 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:6 ; pages:7 |
Links: |
---|
DOI / URN: |
10.1109/JPHOT.2021.3119178 |
---|
Katalog-ID: |
DOAJ054865344 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054865344 | ||
003 | DE-627 | ||
005 | 20230308184546.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JPHOT.2021.3119178 |2 doi | |
035 | |a (DE-627)DOAJ054865344 | ||
035 | |a (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
050 | 0 | |a QC350-467 | |
100 | 0 | |a Qing Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. | ||
650 | 4 | |a Fano resonance | |
650 | 4 | |a Ge_2Sb_2Te_5 | |
650 | 4 | |a Q factor | |
650 | 4 | |a fano lineshape | |
653 | 0 | |a Applied optics. Photonics | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Danyang Yao |e verfasserin |4 aut | |
700 | 0 | |a Yan Liu |e verfasserin |4 aut | |
700 | 0 | |a Xinyi Liu |e verfasserin |4 aut | |
700 | 0 | |a Yong Zhang |e verfasserin |4 aut | |
700 | 0 | |a Genquan Han |e verfasserin |4 aut | |
700 | 0 | |a Yue Hao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Photonics Journal |d IEEE, 2015 |g 13(2021), 6, Seite 7 |w (DE-627)600310272 |w (DE-600)2495610-7 |x 19430655 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:6 |g pages:7 |
856 | 4 | 0 | |u https://doi.org/10.1109/JPHOT.2021.3119178 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9566828/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1943-0655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 6 |h 7 |
author_variant |
q l ql d y dy y l yl x l xl y z yz g h gh y h yh |
---|---|
matchkey_str |
article:19430655:2021----::ouainffcoadaoiehpigsbsbbu2utsbs |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1109/JPHOT.2021.3119178 doi (DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Qing Liu verfasserin aut Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light Danyang Yao verfasserin aut Yan Liu verfasserin aut Xinyi Liu verfasserin aut Yong Zhang verfasserin aut Genquan Han verfasserin aut Yue Hao verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 6, Seite 7 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:6 pages:7 https://doi.org/10.1109/JPHOT.2021.3119178 kostenfrei https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b kostenfrei https://ieeexplore.ieee.org/document/9566828/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 6 7 |
spelling |
10.1109/JPHOT.2021.3119178 doi (DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Qing Liu verfasserin aut Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light Danyang Yao verfasserin aut Yan Liu verfasserin aut Xinyi Liu verfasserin aut Yong Zhang verfasserin aut Genquan Han verfasserin aut Yue Hao verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 6, Seite 7 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:6 pages:7 https://doi.org/10.1109/JPHOT.2021.3119178 kostenfrei https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b kostenfrei https://ieeexplore.ieee.org/document/9566828/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 6 7 |
allfields_unstemmed |
10.1109/JPHOT.2021.3119178 doi (DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Qing Liu verfasserin aut Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light Danyang Yao verfasserin aut Yan Liu verfasserin aut Xinyi Liu verfasserin aut Yong Zhang verfasserin aut Genquan Han verfasserin aut Yue Hao verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 6, Seite 7 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:6 pages:7 https://doi.org/10.1109/JPHOT.2021.3119178 kostenfrei https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b kostenfrei https://ieeexplore.ieee.org/document/9566828/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 6 7 |
allfieldsGer |
10.1109/JPHOT.2021.3119178 doi (DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Qing Liu verfasserin aut Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light Danyang Yao verfasserin aut Yan Liu verfasserin aut Xinyi Liu verfasserin aut Yong Zhang verfasserin aut Genquan Han verfasserin aut Yue Hao verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 6, Seite 7 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:6 pages:7 https://doi.org/10.1109/JPHOT.2021.3119178 kostenfrei https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b kostenfrei https://ieeexplore.ieee.org/document/9566828/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 6 7 |
allfieldsSound |
10.1109/JPHOT.2021.3119178 doi (DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Qing Liu verfasserin aut Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light Danyang Yao verfasserin aut Yan Liu verfasserin aut Xinyi Liu verfasserin aut Yong Zhang verfasserin aut Genquan Han verfasserin aut Yue Hao verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 6, Seite 7 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:6 pages:7 https://doi.org/10.1109/JPHOT.2021.3119178 kostenfrei https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b kostenfrei https://ieeexplore.ieee.org/document/9566828/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 6 7 |
language |
English |
source |
In IEEE Photonics Journal 13(2021), 6, Seite 7 volume:13 year:2021 number:6 pages:7 |
sourceStr |
In IEEE Photonics Journal 13(2021), 6, Seite 7 volume:13 year:2021 number:6 pages:7 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape Applied optics. Photonics Optics. Light |
isfreeaccess_bool |
true |
container_title |
IEEE Photonics Journal |
authorswithroles_txt_mv |
Qing Liu @@aut@@ Danyang Yao @@aut@@ Yan Liu @@aut@@ Xinyi Liu @@aut@@ Yong Zhang @@aut@@ Genquan Han @@aut@@ Yue Hao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
600310272 |
id |
DOAJ054865344 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054865344</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308184546.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2021.3119178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054865344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ge_2Sb_2Te_5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fano lineshape</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danyang Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Genquan Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">13(2021), 6, Seite 7</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2021.3119178</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9566828/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="h">7</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qing Liu |
spellingShingle |
Qing Liu misc TA1501-1820 misc QC350-467 misc Fano resonance misc Ge_2Sb_2Te_5 misc Q factor misc fano lineshape misc Applied optics. Photonics misc Optics. Light Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
authorStr |
Qing Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600310272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
19430655 |
topic_title |
TA1501-1820 QC350-467 Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure Fano resonance Ge_2Sb_2Te_5 Q factor fano lineshape |
topic |
misc TA1501-1820 misc QC350-467 misc Fano resonance misc Ge_2Sb_2Te_5 misc Q factor misc fano lineshape misc Applied optics. Photonics misc Optics. Light |
topic_unstemmed |
misc TA1501-1820 misc QC350-467 misc Fano resonance misc Ge_2Sb_2Te_5 misc Q factor misc fano lineshape misc Applied optics. Photonics misc Optics. Light |
topic_browse |
misc TA1501-1820 misc QC350-467 misc Fano resonance misc Ge_2Sb_2Te_5 misc Q factor misc fano lineshape misc Applied optics. Photonics misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Photonics Journal |
hierarchy_parent_id |
600310272 |
hierarchy_top_title |
IEEE Photonics Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600310272 (DE-600)2495610-7 |
title |
Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
ctrlnum |
(DE-627)DOAJ054865344 (DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b |
title_full |
Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
author_sort |
Qing Liu |
journal |
IEEE Photonics Journal |
journalStr |
IEEE Photonics Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
7 |
author_browse |
Qing Liu Danyang Yao Yan Liu Xinyi Liu Yong Zhang Genquan Han Yue Hao |
container_volume |
13 |
class |
TA1501-1820 QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Qing Liu |
doi_str_mv |
10.1109/JPHOT.2021.3119178 |
author2-role |
verfasserin |
title_sort |
modulation of q factor and fano lineshape in ge<sub<2</sub<sb<sub<2</sub<te<sub<5</sub<-based grating structure |
callnumber |
TA1501-1820 |
title_auth |
Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
abstract |
In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. |
abstractGer |
In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. |
abstract_unstemmed |
In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure |
url |
https://doi.org/10.1109/JPHOT.2021.3119178 https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b https://ieeexplore.ieee.org/document/9566828/ https://doaj.org/toc/1943-0655 |
remote_bool |
true |
author2 |
Danyang Yao Yan Liu Xinyi Liu Yong Zhang Genquan Han Yue Hao |
author2Str |
Danyang Yao Yan Liu Xinyi Liu Yong Zhang Genquan Han Yue Hao |
ppnlink |
600310272 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JPHOT.2021.3119178 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-04T00:54:43.471Z |
_version_ |
1803607850063233024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054865344</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308184546.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2021.3119178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054865344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfdc4b8eebbae4290847e3de95d95ba7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modulation of Q Factor and Fano Lineshape in Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub<-Based Grating Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the modulation of the Fano resonance (FR) of dielectric grating has been demonstrated by controlling the crystallization fraction of phase change material film. We analyze the optical characteristics of the grating structure thoroughly by the energy band structure, Q factor, and the electric field distribution of three TE modes. It is verified that the Q factor and the Fano lineshape are related to the thickness of the Ge<sub<2</sub<Sb<sub<2</sub<Te<sub<5</sub< (GST) layer. In addition, by changing the crystallization fraction of the GST layer, non-volatile modulation of the Q factor can be achieved. We also demonstrate that the crystallization fraction of the GST layer affects the Fano lineshape significantly. By changing the crystallization fraction of the GST layer, the non-volatile modulation of Fano lineshape from asymmetric parameter <italic<q</italic< = −1 to <italic<q</italic< = 1 can be achieved. These features make this grating structure an excellent optically reconfigurable device in various fields including lasing spaser and biosensing with improved performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ge_2Sb_2Te_5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fano lineshape</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danyang Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Genquan Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">13(2021), 6, Seite 7</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2021.3119178</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fdc4b8eebbae4290847e3de95d95ba7b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9566828/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="h">7</subfield></datafield></record></collection>
|
score |
7.401737 |