Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions
Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure...
Ausführliche Beschreibung
Autor*in: |
Janani Murallidharan [verfasserIn] Giovanni Giustini [verfasserIn] Yohei Sato [verfasserIn] Bojan Ničeno [verfasserIn] Vittorio Badalassi [verfasserIn] Simon P. Walker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nuclear Engineering and Technology - Elsevier, 2016, 48(2016), 4, Seite 859-869 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2016 ; number:4 ; pages:859-869 |
Links: |
---|
DOI / URN: |
10.1016/j.net.2016.06.004 |
---|
Katalog-ID: |
DOAJ054986222 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054986222 | ||
003 | DE-627 | ||
005 | 20230308185116.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.net.2016.06.004 |2 doi | |
035 | |a (DE-627)DOAJ054986222 | ||
035 | |a (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK9001-9401 | |
100 | 0 | |a Janani Murallidharan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. | ||
650 | 4 | |a Bubble Growth Rate | |
650 | 4 | |a Direct Numerical Simulation | |
650 | 4 | |a High Pressure | |
650 | 4 | |a Pool Boiling | |
653 | 0 | |a Nuclear engineering. Atomic power | |
700 | 0 | |a Giovanni Giustini |e verfasserin |4 aut | |
700 | 0 | |a Yohei Sato |e verfasserin |4 aut | |
700 | 0 | |a Bojan Ničeno |e verfasserin |4 aut | |
700 | 0 | |a Vittorio Badalassi |e verfasserin |4 aut | |
700 | 0 | |a Simon P. Walker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nuclear Engineering and Technology |d Elsevier, 2016 |g 48(2016), 4, Seite 859-869 |w (DE-627)63243855X |w (DE-600)2566624-1 |x 17385733 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2016 |g number:4 |g pages:859-869 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.net.2016.06.004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1738573316300912 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1738-5733 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 48 |j 2016 |e 4 |h 859-869 |
author_variant |
j m jm g g gg y s ys b n bn v b vb s p w spw |
---|---|
matchkey_str |
article:17385733:2016----::opttoafudyaismltoosnlbblgotudrihrs |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
TK |
publishDate |
2016 |
allfields |
10.1016/j.net.2016.06.004 doi (DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c DE-627 ger DE-627 rakwb eng TK9001-9401 Janani Murallidharan verfasserin aut Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power Giovanni Giustini verfasserin aut Yohei Sato verfasserin aut Bojan Ničeno verfasserin aut Vittorio Badalassi verfasserin aut Simon P. Walker verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 48(2016), 4, Seite 859-869 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:48 year:2016 number:4 pages:859-869 https://doi.org/10.1016/j.net.2016.06.004 kostenfrei https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316300912 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 48 2016 4 859-869 |
spelling |
10.1016/j.net.2016.06.004 doi (DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c DE-627 ger DE-627 rakwb eng TK9001-9401 Janani Murallidharan verfasserin aut Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power Giovanni Giustini verfasserin aut Yohei Sato verfasserin aut Bojan Ničeno verfasserin aut Vittorio Badalassi verfasserin aut Simon P. Walker verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 48(2016), 4, Seite 859-869 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:48 year:2016 number:4 pages:859-869 https://doi.org/10.1016/j.net.2016.06.004 kostenfrei https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316300912 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 48 2016 4 859-869 |
allfields_unstemmed |
10.1016/j.net.2016.06.004 doi (DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c DE-627 ger DE-627 rakwb eng TK9001-9401 Janani Murallidharan verfasserin aut Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power Giovanni Giustini verfasserin aut Yohei Sato verfasserin aut Bojan Ničeno verfasserin aut Vittorio Badalassi verfasserin aut Simon P. Walker verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 48(2016), 4, Seite 859-869 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:48 year:2016 number:4 pages:859-869 https://doi.org/10.1016/j.net.2016.06.004 kostenfrei https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316300912 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 48 2016 4 859-869 |
allfieldsGer |
10.1016/j.net.2016.06.004 doi (DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c DE-627 ger DE-627 rakwb eng TK9001-9401 Janani Murallidharan verfasserin aut Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power Giovanni Giustini verfasserin aut Yohei Sato verfasserin aut Bojan Ničeno verfasserin aut Vittorio Badalassi verfasserin aut Simon P. Walker verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 48(2016), 4, Seite 859-869 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:48 year:2016 number:4 pages:859-869 https://doi.org/10.1016/j.net.2016.06.004 kostenfrei https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316300912 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 48 2016 4 859-869 |
allfieldsSound |
10.1016/j.net.2016.06.004 doi (DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c DE-627 ger DE-627 rakwb eng TK9001-9401 Janani Murallidharan verfasserin aut Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power Giovanni Giustini verfasserin aut Yohei Sato verfasserin aut Bojan Ničeno verfasserin aut Vittorio Badalassi verfasserin aut Simon P. Walker verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 48(2016), 4, Seite 859-869 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:48 year:2016 number:4 pages:859-869 https://doi.org/10.1016/j.net.2016.06.004 kostenfrei https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316300912 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 48 2016 4 859-869 |
language |
English |
source |
In Nuclear Engineering and Technology 48(2016), 4, Seite 859-869 volume:48 year:2016 number:4 pages:859-869 |
sourceStr |
In Nuclear Engineering and Technology 48(2016), 4, Seite 859-869 volume:48 year:2016 number:4 pages:859-869 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling Nuclear engineering. Atomic power |
isfreeaccess_bool |
true |
container_title |
Nuclear Engineering and Technology |
authorswithroles_txt_mv |
Janani Murallidharan @@aut@@ Giovanni Giustini @@aut@@ Yohei Sato @@aut@@ Bojan Ničeno @@aut@@ Vittorio Badalassi @@aut@@ Simon P. Walker @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
63243855X |
id |
DOAJ054986222 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054986222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2016.06.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054986222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Janani Murallidharan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubble Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct Numerical Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pool Boiling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Giustini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yohei Sato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojan Ničeno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vittorio Badalassi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon P. Walker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">48(2016), 4, Seite 859-869</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:859-869</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2016.06.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573316300912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">859-869</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Janani Murallidharan |
spellingShingle |
Janani Murallidharan misc TK9001-9401 misc Bubble Growth Rate misc Direct Numerical Simulation misc High Pressure misc Pool Boiling misc Nuclear engineering. Atomic power Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
authorStr |
Janani Murallidharan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)63243855X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK9001-9401 |
illustrated |
Not Illustrated |
issn |
17385733 |
topic_title |
TK9001-9401 Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions Bubble Growth Rate Direct Numerical Simulation High Pressure Pool Boiling |
topic |
misc TK9001-9401 misc Bubble Growth Rate misc Direct Numerical Simulation misc High Pressure misc Pool Boiling misc Nuclear engineering. Atomic power |
topic_unstemmed |
misc TK9001-9401 misc Bubble Growth Rate misc Direct Numerical Simulation misc High Pressure misc Pool Boiling misc Nuclear engineering. Atomic power |
topic_browse |
misc TK9001-9401 misc Bubble Growth Rate misc Direct Numerical Simulation misc High Pressure misc Pool Boiling misc Nuclear engineering. Atomic power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear Engineering and Technology |
hierarchy_parent_id |
63243855X |
hierarchy_top_title |
Nuclear Engineering and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)63243855X (DE-600)2566624-1 |
title |
Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
ctrlnum |
(DE-627)DOAJ054986222 (DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c |
title_full |
Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
author_sort |
Janani Murallidharan |
journal |
Nuclear Engineering and Technology |
journalStr |
Nuclear Engineering and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
859 |
author_browse |
Janani Murallidharan Giovanni Giustini Yohei Sato Bojan Ničeno Vittorio Badalassi Simon P. Walker |
container_volume |
48 |
class |
TK9001-9401 |
format_se |
Elektronische Aufsätze |
author-letter |
Janani Murallidharan |
doi_str_mv |
10.1016/j.net.2016.06.004 |
author2-role |
verfasserin |
title_sort |
computational fluid dynamic simulation of single bubble growth under high-pressure pool boiling conditions |
callnumber |
TK9001-9401 |
title_auth |
Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
abstract |
Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. |
abstractGer |
Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. |
abstract_unstemmed |
Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions |
url |
https://doi.org/10.1016/j.net.2016.06.004 https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c http://www.sciencedirect.com/science/article/pii/S1738573316300912 https://doaj.org/toc/1738-5733 |
remote_bool |
true |
author2 |
Giovanni Giustini Yohei Sato Bojan Ničeno Vittorio Badalassi Simon P. Walker |
author2Str |
Giovanni Giustini Yohei Sato Bojan Ničeno Vittorio Badalassi Simon P. Walker |
ppnlink |
63243855X |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.net.2016.06.004 |
callnumber-a |
TK9001-9401 |
up_date |
2024-07-04T01:22:07.060Z |
_version_ |
1803609573492260864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054986222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2016.06.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054986222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ163ab540414f49a6b64f7b92ad7e211c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Janani Murallidharan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubble Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct Numerical Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pool Boiling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Giustini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yohei Sato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bojan Ničeno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vittorio Badalassi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon P. Walker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">48(2016), 4, Seite 859-869</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:859-869</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2016.06.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/163ab540414f49a6b64f7b92ad7e211c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573316300912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">859-869</subfield></datafield></record></collection>
|
score |
7.4018803 |