scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks
Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regula...
Ausführliche Beschreibung
Autor*in: |
Ting Jin [verfasserIn] Peter Rehani [verfasserIn] Mufang Ying [verfasserIn] Jiawei Huang [verfasserIn] Shuang Liu [verfasserIn] Panagiotis Roussos [verfasserIn] Daifeng Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Single-cell multi-omics integration Cell-type gene regulatory network |
---|
Übergeordnetes Werk: |
In: Genome Medicine - BMC, 2016, 13(2021), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1186/s13073-021-00908-9 |
---|
Katalog-ID: |
DOAJ054999243 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ054999243 | ||
003 | DE-627 | ||
005 | 20230308185152.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13073-021-00908-9 |2 doi | |
035 | |a (DE-627)DOAJ054999243 | ||
035 | |a (DE-599)DOAJa05e48828d364f5a92653c3fea92879d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Ting Jin |e verfasserin |4 aut | |
245 | 1 | 0 | |a scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . | ||
650 | 4 | |a Single-cell genomics | |
650 | 4 | |a Single-cell multi-omics integration | |
650 | 4 | |a Cell-type gene regulatory network | |
650 | 4 | |a Cell-type disease risk genes | |
650 | 4 | |a Cross-disease functional genomics | |
650 | 4 | |a Schizophrenia | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Genetics | |
700 | 0 | |a Peter Rehani |e verfasserin |4 aut | |
700 | 0 | |a Mufang Ying |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Huang |e verfasserin |4 aut | |
700 | 0 | |a Shuang Liu |e verfasserin |4 aut | |
700 | 0 | |a Panagiotis Roussos |e verfasserin |4 aut | |
700 | 0 | |a Daifeng Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genome Medicine |d BMC, 2016 |g 13(2021), 1, Seite 15 |w (DE-627)594424275 |w (DE-600)2484394-5 |x 1756994X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13073-021-00908-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a05e48828d364f5a92653c3fea92879d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s13073-021-00908-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1756-994X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 1 |h 15 |
author_variant |
t j tj p r pr m y my j h jh s l sl p r pr d w dw |
---|---|
matchkey_str |
article:1756994X:2021----::croaopttoapplnoitgaieutoisnlssopeitncltpds |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.1186/s13073-021-00908-9 doi (DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d DE-627 ger DE-627 rakwb eng QH426-470 Ting Jin verfasserin aut scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics Peter Rehani verfasserin aut Mufang Ying verfasserin aut Jiawei Huang verfasserin aut Shuang Liu verfasserin aut Panagiotis Roussos verfasserin aut Daifeng Wang verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 15 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:15 https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/article/a05e48828d364f5a92653c3fea92879d kostenfrei https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 15 |
spelling |
10.1186/s13073-021-00908-9 doi (DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d DE-627 ger DE-627 rakwb eng QH426-470 Ting Jin verfasserin aut scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics Peter Rehani verfasserin aut Mufang Ying verfasserin aut Jiawei Huang verfasserin aut Shuang Liu verfasserin aut Panagiotis Roussos verfasserin aut Daifeng Wang verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 15 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:15 https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/article/a05e48828d364f5a92653c3fea92879d kostenfrei https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 15 |
allfields_unstemmed |
10.1186/s13073-021-00908-9 doi (DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d DE-627 ger DE-627 rakwb eng QH426-470 Ting Jin verfasserin aut scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics Peter Rehani verfasserin aut Mufang Ying verfasserin aut Jiawei Huang verfasserin aut Shuang Liu verfasserin aut Panagiotis Roussos verfasserin aut Daifeng Wang verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 15 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:15 https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/article/a05e48828d364f5a92653c3fea92879d kostenfrei https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 15 |
allfieldsGer |
10.1186/s13073-021-00908-9 doi (DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d DE-627 ger DE-627 rakwb eng QH426-470 Ting Jin verfasserin aut scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics Peter Rehani verfasserin aut Mufang Ying verfasserin aut Jiawei Huang verfasserin aut Shuang Liu verfasserin aut Panagiotis Roussos verfasserin aut Daifeng Wang verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 15 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:15 https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/article/a05e48828d364f5a92653c3fea92879d kostenfrei https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 15 |
allfieldsSound |
10.1186/s13073-021-00908-9 doi (DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d DE-627 ger DE-627 rakwb eng QH426-470 Ting Jin verfasserin aut scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics Peter Rehani verfasserin aut Mufang Ying verfasserin aut Jiawei Huang verfasserin aut Shuang Liu verfasserin aut Panagiotis Roussos verfasserin aut Daifeng Wang verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 15 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:15 https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/article/a05e48828d364f5a92653c3fea92879d kostenfrei https://doi.org/10.1186/s13073-021-00908-9 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 15 |
language |
English |
source |
In Genome Medicine 13(2021), 1, Seite 15 volume:13 year:2021 number:1 pages:15 |
sourceStr |
In Genome Medicine 13(2021), 1, Seite 15 volume:13 year:2021 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia Medicine R Genetics |
isfreeaccess_bool |
true |
container_title |
Genome Medicine |
authorswithroles_txt_mv |
Ting Jin @@aut@@ Peter Rehani @@aut@@ Mufang Ying @@aut@@ Jiawei Huang @@aut@@ Shuang Liu @@aut@@ Panagiotis Roussos @@aut@@ Daifeng Wang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
594424275 |
id |
DOAJ054999243 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054999243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13073-021-00908-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054999243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa05e48828d364f5a92653c3fea92879d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ting Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-cell genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-cell multi-omics integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell-type gene regulatory network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell-type disease risk genes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-disease functional genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schizophrenia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Rehani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mufang Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panagiotis Roussos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daifeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genome Medicine</subfield><subfield code="d">BMC, 2016</subfield><subfield code="g">13(2021), 1, Seite 15</subfield><subfield code="w">(DE-627)594424275</subfield><subfield code="w">(DE-600)2484394-5</subfield><subfield code="x">1756994X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00908-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a05e48828d364f5a92653c3fea92879d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00908-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-994X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ting Jin |
spellingShingle |
Ting Jin misc QH426-470 misc Single-cell genomics misc Single-cell multi-omics integration misc Cell-type gene regulatory network misc Cell-type disease risk genes misc Cross-disease functional genomics misc Schizophrenia misc Medicine misc R misc Genetics scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
authorStr |
Ting Jin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)594424275 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
1756994X |
topic_title |
QH426-470 scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks Single-cell genomics Single-cell multi-omics integration Cell-type gene regulatory network Cell-type disease risk genes Cross-disease functional genomics Schizophrenia |
topic |
misc QH426-470 misc Single-cell genomics misc Single-cell multi-omics integration misc Cell-type gene regulatory network misc Cell-type disease risk genes misc Cross-disease functional genomics misc Schizophrenia misc Medicine misc R misc Genetics |
topic_unstemmed |
misc QH426-470 misc Single-cell genomics misc Single-cell multi-omics integration misc Cell-type gene regulatory network misc Cell-type disease risk genes misc Cross-disease functional genomics misc Schizophrenia misc Medicine misc R misc Genetics |
topic_browse |
misc QH426-470 misc Single-cell genomics misc Single-cell multi-omics integration misc Cell-type gene regulatory network misc Cell-type disease risk genes misc Cross-disease functional genomics misc Schizophrenia misc Medicine misc R misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genome Medicine |
hierarchy_parent_id |
594424275 |
hierarchy_top_title |
Genome Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)594424275 (DE-600)2484394-5 |
title |
scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
ctrlnum |
(DE-627)DOAJ054999243 (DE-599)DOAJa05e48828d364f5a92653c3fea92879d |
title_full |
scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
author_sort |
Ting Jin |
journal |
Genome Medicine |
journalStr |
Genome Medicine |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Ting Jin Peter Rehani Mufang Ying Jiawei Huang Shuang Liu Panagiotis Roussos Daifeng Wang |
container_volume |
13 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Ting Jin |
doi_str_mv |
10.1186/s13073-021-00908-9 |
author2-role |
verfasserin |
title_sort |
scgrnom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
callnumber |
QH426-470 |
title_auth |
scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
abstract |
Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . |
abstractGer |
Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . |
abstract_unstemmed |
Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks |
url |
https://doi.org/10.1186/s13073-021-00908-9 https://doaj.org/article/a05e48828d364f5a92653c3fea92879d https://doaj.org/toc/1756-994X |
remote_bool |
true |
author2 |
Peter Rehani Mufang Ying Jiawei Huang Shuang Liu Panagiotis Roussos Daifeng Wang |
author2Str |
Peter Rehani Mufang Ying Jiawei Huang Shuang Liu Panagiotis Roussos Daifeng Wang |
ppnlink |
594424275 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13073-021-00908-9 |
callnumber-a |
QH426-470 |
up_date |
2024-07-04T01:25:05.190Z |
_version_ |
1803609760274055168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ054999243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13073-021-00908-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ054999243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa05e48828d364f5a92653c3fea92879d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ting Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer’s disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-cell genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-cell multi-omics integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell-type gene regulatory network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell-type disease risk genes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-disease functional genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schizophrenia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Rehani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mufang Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panagiotis Roussos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daifeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genome Medicine</subfield><subfield code="d">BMC, 2016</subfield><subfield code="g">13(2021), 1, Seite 15</subfield><subfield code="w">(DE-627)594424275</subfield><subfield code="w">(DE-600)2484394-5</subfield><subfield code="x">1756994X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00908-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a05e48828d364f5a92653c3fea92879d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00908-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-994X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.400509 |