Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib
PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with tr...
Ausführliche Beschreibung
Autor*in: |
Bin-Yan Zhong [verfasserIn] Zhi-Ping Yan [verfasserIn] Jun-Hui Sun [verfasserIn] Lei Zhang [verfasserIn] Zhong-Heng Hou [verfasserIn] Min-Jie Yang [verfasserIn] Guan-Hui Zhou [verfasserIn] Wan-Sheng Wang [verfasserIn] Zhi Li [verfasserIn] Peng Huang [verfasserIn] Shen Zhang [verfasserIn] Xiao-Li Zhu [verfasserIn] Cai-Fang Ni [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Oncology - Frontiers Media S.A., 2012, 10(2020) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 |
Links: |
---|
DOI / URN: |
10.3389/fonc.2020.525461 |
---|
Katalog-ID: |
DOAJ055092020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055092020 | ||
003 | DE-627 | ||
005 | 20230308185552.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fonc.2020.525461 |2 doi | |
035 | |a (DE-627)DOAJ055092020 | ||
035 | |a (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Bin-Yan Zhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. | ||
650 | 4 | |a hepatocellular carcinoma | |
650 | 4 | |a albumin–bilirubin | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a nomogram | |
650 | 4 | |a artificial neural network | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Zhi-Ping Yan |e verfasserin |4 aut | |
700 | 0 | |a Zhi-Ping Yan |e verfasserin |4 aut | |
700 | 0 | |a Zhi-Ping Yan |e verfasserin |4 aut | |
700 | 0 | |a Jun-Hui Sun |e verfasserin |4 aut | |
700 | 0 | |a Lei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zhong-Heng Hou |e verfasserin |4 aut | |
700 | 0 | |a Min-Jie Yang |e verfasserin |4 aut | |
700 | 0 | |a Min-Jie Yang |e verfasserin |4 aut | |
700 | 0 | |a Min-Jie Yang |e verfasserin |4 aut | |
700 | 0 | |a Guan-Hui Zhou |e verfasserin |4 aut | |
700 | 0 | |a Wan-Sheng Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhi Li |e verfasserin |4 aut | |
700 | 0 | |a Peng Huang |e verfasserin |4 aut | |
700 | 0 | |a Shen Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Li Zhu |e verfasserin |4 aut | |
700 | 0 | |a Cai-Fang Ni |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Oncology |d Frontiers Media S.A., 2012 |g 10(2020) |w (DE-627)684965518 |w (DE-600)2649216-7 |x 2234943X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.3389/fonc.2020.525461 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2234-943X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |
author_variant |
b y z byz z p y zpy z p y zpy z p y zpy j h s jhs l z lz z h h zhh m j y mjy m j y mjy m j y mjy g h z ghz w s w wsw z l zl p h ph s z sz x l z xlz c f n cfn |
---|---|
matchkey_str |
article:2234943X:2020----::rgotcefracoabmniiuigaeihriiilnelgneohptcluacrioaraewttasre |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.3389/fonc.2020.525461 doi (DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce DE-627 ger DE-627 rakwb eng RC254-282 Bin-Yan Zhong verfasserin aut Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Jun-Hui Sun verfasserin aut Lei Zhang verfasserin aut Zhong-Heng Hou verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Guan-Hui Zhou verfasserin aut Wan-Sheng Wang verfasserin aut Zhi Li verfasserin aut Peng Huang verfasserin aut Shen Zhang verfasserin aut Xiao-Li Zhu verfasserin aut Cai-Fang Ni verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.525461 kostenfrei https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
spelling |
10.3389/fonc.2020.525461 doi (DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce DE-627 ger DE-627 rakwb eng RC254-282 Bin-Yan Zhong verfasserin aut Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Jun-Hui Sun verfasserin aut Lei Zhang verfasserin aut Zhong-Heng Hou verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Guan-Hui Zhou verfasserin aut Wan-Sheng Wang verfasserin aut Zhi Li verfasserin aut Peng Huang verfasserin aut Shen Zhang verfasserin aut Xiao-Li Zhu verfasserin aut Cai-Fang Ni verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.525461 kostenfrei https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfields_unstemmed |
10.3389/fonc.2020.525461 doi (DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce DE-627 ger DE-627 rakwb eng RC254-282 Bin-Yan Zhong verfasserin aut Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Jun-Hui Sun verfasserin aut Lei Zhang verfasserin aut Zhong-Heng Hou verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Guan-Hui Zhou verfasserin aut Wan-Sheng Wang verfasserin aut Zhi Li verfasserin aut Peng Huang verfasserin aut Shen Zhang verfasserin aut Xiao-Li Zhu verfasserin aut Cai-Fang Ni verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.525461 kostenfrei https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsGer |
10.3389/fonc.2020.525461 doi (DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce DE-627 ger DE-627 rakwb eng RC254-282 Bin-Yan Zhong verfasserin aut Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Jun-Hui Sun verfasserin aut Lei Zhang verfasserin aut Zhong-Heng Hou verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Guan-Hui Zhou verfasserin aut Wan-Sheng Wang verfasserin aut Zhi Li verfasserin aut Peng Huang verfasserin aut Shen Zhang verfasserin aut Xiao-Li Zhu verfasserin aut Cai-Fang Ni verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.525461 kostenfrei https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsSound |
10.3389/fonc.2020.525461 doi (DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce DE-627 ger DE-627 rakwb eng RC254-282 Bin-Yan Zhong verfasserin aut Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Zhi-Ping Yan verfasserin aut Jun-Hui Sun verfasserin aut Lei Zhang verfasserin aut Zhong-Heng Hou verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Min-Jie Yang verfasserin aut Guan-Hui Zhou verfasserin aut Wan-Sheng Wang verfasserin aut Zhi Li verfasserin aut Peng Huang verfasserin aut Shen Zhang verfasserin aut Xiao-Li Zhu verfasserin aut Cai-Fang Ni verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.525461 kostenfrei https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
language |
English |
source |
In Frontiers in Oncology 10(2020) volume:10 year:2020 |
sourceStr |
In Frontiers in Oncology 10(2020) volume:10 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Frontiers in Oncology |
authorswithroles_txt_mv |
Bin-Yan Zhong @@aut@@ Zhi-Ping Yan @@aut@@ Jun-Hui Sun @@aut@@ Lei Zhang @@aut@@ Zhong-Heng Hou @@aut@@ Min-Jie Yang @@aut@@ Guan-Hui Zhou @@aut@@ Wan-Sheng Wang @@aut@@ Zhi Li @@aut@@ Peng Huang @@aut@@ Shen Zhang @@aut@@ Xiao-Li Zhu @@aut@@ Cai-Fang Ni @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
684965518 |
id |
DOAJ055092020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055092020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2020.525461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055092020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin-Yan Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatocellular carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">albumin–bilirubin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun-Hui Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong-Heng Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guan-Hui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wan-Sheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shen Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cai-Fang Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2020.525461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Bin-Yan Zhong |
spellingShingle |
Bin-Yan Zhong misc RC254-282 misc hepatocellular carcinoma misc albumin–bilirubin misc artificial intelligence misc nomogram misc artificial neural network misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
authorStr |
Bin-Yan Zhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684965518 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
2234943X |
topic_title |
RC254-282 Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib hepatocellular carcinoma albumin–bilirubin artificial intelligence nomogram artificial neural network |
topic |
misc RC254-282 misc hepatocellular carcinoma misc albumin–bilirubin misc artificial intelligence misc nomogram misc artificial neural network misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc hepatocellular carcinoma misc albumin–bilirubin misc artificial intelligence misc nomogram misc artificial neural network misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc hepatocellular carcinoma misc albumin–bilirubin misc artificial intelligence misc nomogram misc artificial neural network misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Oncology |
hierarchy_parent_id |
684965518 |
hierarchy_top_title |
Frontiers in Oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684965518 (DE-600)2649216-7 |
title |
Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
ctrlnum |
(DE-627)DOAJ055092020 (DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce |
title_full |
Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
author_sort |
Bin-Yan Zhong |
journal |
Frontiers in Oncology |
journalStr |
Frontiers in Oncology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Bin-Yan Zhong Zhi-Ping Yan Jun-Hui Sun Lei Zhang Zhong-Heng Hou Min-Jie Yang Guan-Hui Zhou Wan-Sheng Wang Zhi Li Peng Huang Shen Zhang Xiao-Li Zhu Cai-Fang Ni |
container_volume |
10 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Bin-Yan Zhong |
doi_str_mv |
10.3389/fonc.2020.525461 |
author2-role |
verfasserin |
title_sort |
prognostic performance of albumin–bilirubin grade with artificial intelligence for hepatocellular carcinoma treated with transarterial chemoembolization combined with sorafenib |
callnumber |
RC254-282 |
title_auth |
Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
abstract |
PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. |
abstractGer |
PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. |
abstract_unstemmed |
PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib |
url |
https://doi.org/10.3389/fonc.2020.525461 https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full https://doaj.org/toc/2234-943X |
remote_bool |
true |
author2 |
Zhi-Ping Yan Jun-Hui Sun Lei Zhang Zhong-Heng Hou Min-Jie Yang Guan-Hui Zhou Wan-Sheng Wang Zhi Li Peng Huang Shen Zhang Xiao-Li Zhu Cai-Fang Ni |
author2Str |
Zhi-Ping Yan Jun-Hui Sun Lei Zhang Zhong-Heng Hou Min-Jie Yang Guan-Hui Zhou Wan-Sheng Wang Zhi Li Peng Huang Shen Zhang Xiao-Li Zhu Cai-Fang Ni |
ppnlink |
684965518 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fonc.2020.525461 |
callnumber-a |
RC254-282 |
up_date |
2024-07-04T01:46:20.227Z |
_version_ |
1803611097246203904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055092020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2020.525461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055092020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2f583820831e48d9957d5c98d33b2cce</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin-Yan Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prognostic Performance of Albumin–Bilirubin Grade With Artificial Intelligence for Hepatocellular Carcinoma Treated With Transarterial Chemoembolization Combined With Sorafenib</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">PurposeTo establish albumin-bilirubin (ALBI) grade-based and Child-Turcotte-Pugh (CTP) grade-based nomograms, as well as to develop an artificial neural network (ANN) model to compare the prognostic performance and discrimination of these two grades for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) combined with sorafenib as an initial treatment.MethodsThis multicenter retrospective study included patients from three hospitals between January 2013 and August 2018. In the training cohort, independent risk factors associated with overall survival (OS) were identified by univariate and multivariate analyses. The nomograms and ANN were established and then validated in two validation cohorts.ResultsA total of 504 patients (319, 61, and 124 patients from hospitals A, B, and C, respectively) were included. The median OS was 15.2, 26.9, and 14.8 months in the training cohort and validation cohorts 1 and 2, respectively (P = 0.218). In the training cohort, both ALBI grade and CTP grade were identified as independent risk factors. The ALBI grade-based and CTP grade-based nomograms were established separately and showed similar prognostic performance and discrimination when validated in the validation cohorts (C-index in validation cohort 1: 0.799 vs. 0.779, P = 0.762; in validation cohort 2: 0.700 vs. 0.693, P = 0.803). The ANN model showed that the ALBI grade had higher importance in survival prediction than the CTP grade.ConclusionsThe ALBI grade and CTP grade have comparable prognostic performance for HCC patients treated with TACE combined with sorafenib. ALBI grades 1 and 2 have the potential to act as a stratification factor for clinical trials on the combination therapy of TACE and systemic therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatocellular carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">albumin–bilirubin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Ping Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun-Hui Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong-Heng Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Jie Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guan-Hui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wan-Sheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shen Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cai-Fang Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2020.525461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2f583820831e48d9957d5c98d33b2cce</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fonc.2020.525461/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.402112 |