Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway
Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient wh...
Ausführliche Beschreibung
Autor*in: |
Guo Weihong [verfasserIn] Liu Shucai [verfasserIn] Liu Yaoning [verfasserIn] Chen Shuangshuang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
electrical resistivity imaging method |
---|
Übergeordnetes Werk: |
In: Open Geosciences - De Gruyter, 2015, 12(2020), 1, Seite 1083-1093 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:1 ; pages:1083-1093 |
Links: |
---|
DOI / URN: |
10.1515/geo-2020-0175 |
---|
Katalog-ID: |
DOAJ055114067 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055114067 | ||
003 | DE-627 | ||
005 | 20230308185652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/geo-2020-0175 |2 doi | |
035 | |a (DE-627)DOAJ055114067 | ||
035 | |a (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Guo Weihong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. | ||
650 | 4 | |a electrical resistivity imaging method | |
650 | 4 | |a parallel coal seam detection method | |
650 | 4 | |a roadway cavity affect | |
650 | 4 | |a forward calculation | |
653 | 0 | |a Geology | |
700 | 0 | |a Liu Shucai |e verfasserin |4 aut | |
700 | 0 | |a Liu Yaoning |e verfasserin |4 aut | |
700 | 0 | |a Chen Shuangshuang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Open Geosciences |d De Gruyter, 2015 |g 12(2020), 1, Seite 1083-1093 |w (DE-627)804403066 |w (DE-600)2799881-2 |x 23915447 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:1 |g pages:1083-1093 |
856 | 4 | 0 | |u https://doi.org/10.1515/geo-2020-0175 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/geo-2020-0175 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2391-5447 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 1 |h 1083-1093 |
author_variant |
g w gw l s ls l y ly c s cs |
---|---|
matchkey_str |
article:23915447:2020----::plctooeetiarssiiymgntdtcinfidnelgclt |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QE |
publishDate |
2020 |
allfields |
10.1515/geo-2020-0175 doi (DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b DE-627 ger DE-627 rakwb eng QE1-996.5 Guo Weihong verfasserin aut Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology Liu Shucai verfasserin aut Liu Yaoning verfasserin aut Chen Shuangshuang verfasserin aut In Open Geosciences De Gruyter, 2015 12(2020), 1, Seite 1083-1093 (DE-627)804403066 (DE-600)2799881-2 23915447 nnns volume:12 year:2020 number:1 pages:1083-1093 https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b kostenfrei https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/toc/2391-5447 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 1 1083-1093 |
spelling |
10.1515/geo-2020-0175 doi (DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b DE-627 ger DE-627 rakwb eng QE1-996.5 Guo Weihong verfasserin aut Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology Liu Shucai verfasserin aut Liu Yaoning verfasserin aut Chen Shuangshuang verfasserin aut In Open Geosciences De Gruyter, 2015 12(2020), 1, Seite 1083-1093 (DE-627)804403066 (DE-600)2799881-2 23915447 nnns volume:12 year:2020 number:1 pages:1083-1093 https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b kostenfrei https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/toc/2391-5447 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 1 1083-1093 |
allfields_unstemmed |
10.1515/geo-2020-0175 doi (DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b DE-627 ger DE-627 rakwb eng QE1-996.5 Guo Weihong verfasserin aut Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology Liu Shucai verfasserin aut Liu Yaoning verfasserin aut Chen Shuangshuang verfasserin aut In Open Geosciences De Gruyter, 2015 12(2020), 1, Seite 1083-1093 (DE-627)804403066 (DE-600)2799881-2 23915447 nnns volume:12 year:2020 number:1 pages:1083-1093 https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b kostenfrei https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/toc/2391-5447 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 1 1083-1093 |
allfieldsGer |
10.1515/geo-2020-0175 doi (DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b DE-627 ger DE-627 rakwb eng QE1-996.5 Guo Weihong verfasserin aut Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology Liu Shucai verfasserin aut Liu Yaoning verfasserin aut Chen Shuangshuang verfasserin aut In Open Geosciences De Gruyter, 2015 12(2020), 1, Seite 1083-1093 (DE-627)804403066 (DE-600)2799881-2 23915447 nnns volume:12 year:2020 number:1 pages:1083-1093 https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b kostenfrei https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/toc/2391-5447 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 1 1083-1093 |
allfieldsSound |
10.1515/geo-2020-0175 doi (DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b DE-627 ger DE-627 rakwb eng QE1-996.5 Guo Weihong verfasserin aut Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology Liu Shucai verfasserin aut Liu Yaoning verfasserin aut Chen Shuangshuang verfasserin aut In Open Geosciences De Gruyter, 2015 12(2020), 1, Seite 1083-1093 (DE-627)804403066 (DE-600)2799881-2 23915447 nnns volume:12 year:2020 number:1 pages:1083-1093 https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b kostenfrei https://doi.org/10.1515/geo-2020-0175 kostenfrei https://doaj.org/toc/2391-5447 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 1 1083-1093 |
language |
English |
source |
In Open Geosciences 12(2020), 1, Seite 1083-1093 volume:12 year:2020 number:1 pages:1083-1093 |
sourceStr |
In Open Geosciences 12(2020), 1, Seite 1083-1093 volume:12 year:2020 number:1 pages:1083-1093 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation Geology |
isfreeaccess_bool |
true |
container_title |
Open Geosciences |
authorswithroles_txt_mv |
Guo Weihong @@aut@@ Liu Shucai @@aut@@ Liu Yaoning @@aut@@ Chen Shuangshuang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
804403066 |
id |
DOAJ055114067 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055114067</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/geo-2020-0175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055114067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd2d7504ad3d4f21a31956927014995b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guo Weihong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrical resistivity imaging method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel coal seam detection method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roadway cavity affect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forward calculation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Shucai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Yaoning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Shuangshuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Geosciences</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">12(2020), 1, Seite 1083-1093</subfield><subfield code="w">(DE-627)804403066</subfield><subfield code="w">(DE-600)2799881-2</subfield><subfield code="x">23915447</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1083-1093</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/geo-2020-0175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/geo-2020-0175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5447</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">1083-1093</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Guo Weihong |
spellingShingle |
Guo Weihong misc QE1-996.5 misc electrical resistivity imaging method misc parallel coal seam detection method misc roadway cavity affect misc forward calculation misc Geology Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
authorStr |
Guo Weihong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)804403066 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE1-996 |
illustrated |
Not Illustrated |
issn |
23915447 |
topic_title |
QE1-996.5 Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway electrical resistivity imaging method parallel coal seam detection method roadway cavity affect forward calculation |
topic |
misc QE1-996.5 misc electrical resistivity imaging method misc parallel coal seam detection method misc roadway cavity affect misc forward calculation misc Geology |
topic_unstemmed |
misc QE1-996.5 misc electrical resistivity imaging method misc parallel coal seam detection method misc roadway cavity affect misc forward calculation misc Geology |
topic_browse |
misc QE1-996.5 misc electrical resistivity imaging method misc parallel coal seam detection method misc roadway cavity affect misc forward calculation misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Open Geosciences |
hierarchy_parent_id |
804403066 |
hierarchy_top_title |
Open Geosciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)804403066 (DE-600)2799881-2 |
title |
Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
ctrlnum |
(DE-627)DOAJ055114067 (DE-599)DOAJfd2d7504ad3d4f21a31956927014995b |
title_full |
Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
author_sort |
Guo Weihong |
journal |
Open Geosciences |
journalStr |
Open Geosciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1083 |
author_browse |
Guo Weihong Liu Shucai Liu Yaoning Chen Shuangshuang |
container_volume |
12 |
class |
QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo Weihong |
doi_str_mv |
10.1515/geo-2020-0175 |
author2-role |
verfasserin |
title_sort |
application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
callnumber |
QE1-996.5 |
title_auth |
Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
abstract |
Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. |
abstractGer |
Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. |
abstract_unstemmed |
Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway |
url |
https://doi.org/10.1515/geo-2020-0175 https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b https://doaj.org/toc/2391-5447 |
remote_bool |
true |
author2 |
Liu Shucai Liu Yaoning Chen Shuangshuang |
author2Str |
Liu Shucai Liu Yaoning Chen Shuangshuang |
ppnlink |
804403066 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/geo-2020-0175 |
callnumber-a |
QE1-996.5 |
up_date |
2024-07-04T01:50:58.598Z |
_version_ |
1803611389142499328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055114067</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308185652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/geo-2020-0175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055114067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd2d7504ad3d4f21a31956927014995b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guo Weihong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of electrical resistivity imaging to detection of hidden geological structures in a single roadway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Locating concealed geological structures in coal seams on both sides of a coal mine excavation roadway is of vital importance for safe production. Conventional electrical resistivity imaging methods mostly arrange observation systems on the roadway roof and floor, so they are inevitably deficient when it comes to detecting concealed geological structures in coal seams. According to the electric field distribution characteristics of artificial field sources for electrical resistivity imaging methods and utilizing the shielding of current by roadway cavities, this paper proposes the parallel coal seam detection method that arranges observation systems in coal seams on the roadway side to detect concealed geological structures in coal seams. On the basis of introducing the principles of consequent detection methods, this paper investigates the influence of roadway cavities on observation results and offers a method of correcting the influence of roadway cavities. In view of the geoelectric characteristics of typical concealed geological structures in working faces, this paper establishes numerical models to verify the feasibility of the parallel coal seam detection method. As indicated by the calculation results, the consequent pole–dipole (A-MN) observation system is the most ideal in terms of dividing the geoelectric interfaces of concealed geological structures in working faces, and its detection effect is influenced significantly by the coal seam thickness and the electric differences between surrounding rock and anomalous bodies. Coal seam resistivity slightly influences detection of the consequent pole–dipole system. According to practical application effects, the parallel coal seam detection method can solve the problem of detecting concealed geological structures in “single-roadway” working faces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrical resistivity imaging method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel coal seam detection method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roadway cavity affect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forward calculation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Shucai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Yaoning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Shuangshuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Geosciences</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">12(2020), 1, Seite 1083-1093</subfield><subfield code="w">(DE-627)804403066</subfield><subfield code="w">(DE-600)2799881-2</subfield><subfield code="x">23915447</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1083-1093</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/geo-2020-0175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd2d7504ad3d4f21a31956927014995b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/geo-2020-0175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5447</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">1083-1093</subfield></datafield></record></collection>
|
score |
7.4012547 |