Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy
Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a mo...
Ausführliche Beschreibung
Autor*in: |
Lydia Moussa [verfasserIn] Shalom Benrimoj [verfasserIn] Katarzyna Musial [verfasserIn] Simon Kocbek [verfasserIn] Victoria Garcia-Cardenas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Implementation Science - BMC, 2006, 16(2021), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2021 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1186/s13012-021-01138-8 |
---|
Katalog-ID: |
DOAJ055302157 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055302157 | ||
003 | DE-627 | ||
005 | 20230502063726.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13012-021-01138-8 |2 doi | |
035 | |a (DE-627)DOAJ055302157 | ||
035 | |a (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Lydia Moussa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. | ||
650 | 4 | |a Change facilitation | |
650 | 4 | |a Implementation factors | |
650 | 4 | |a Determinants | |
650 | 4 | |a Tailored interventions | |
650 | 4 | |a Facilitation strategies | |
650 | 4 | |a Pharmacy practice | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Shalom Benrimoj |e verfasserin |4 aut | |
700 | 0 | |a Katarzyna Musial |e verfasserin |4 aut | |
700 | 0 | |a Simon Kocbek |e verfasserin |4 aut | |
700 | 0 | |a Victoria Garcia-Cardenas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Implementation Science |d BMC, 2006 |g 16(2021), 1, Seite 11 |w (DE-627)509006191 |w (DE-600)2225822-X |x 17485908 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2021 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13012-021-01138-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s13012-021-01138-8 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1748-5908 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2021 |e 1 |h 11 |
author_variant |
l m lm s b sb k m km s k sk v g c vgc |
---|---|
matchkey_str |
article:17485908:2021----::aarvnprahotioigaiiaintaeisovroemlmnai |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
R |
publishDate |
2021 |
allfields |
10.1186/s13012-021-01138-8 doi (DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 DE-627 ger DE-627 rakwb eng R5-920 Lydia Moussa verfasserin aut Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) Shalom Benrimoj verfasserin aut Katarzyna Musial verfasserin aut Simon Kocbek verfasserin aut Victoria Garcia-Cardenas verfasserin aut In Implementation Science BMC, 2006 16(2021), 1, Seite 11 (DE-627)509006191 (DE-600)2225822-X 17485908 nnns volume:16 year:2021 number:1 pages:11 https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 kostenfrei https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/toc/1748-5908 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 11 |
spelling |
10.1186/s13012-021-01138-8 doi (DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 DE-627 ger DE-627 rakwb eng R5-920 Lydia Moussa verfasserin aut Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) Shalom Benrimoj verfasserin aut Katarzyna Musial verfasserin aut Simon Kocbek verfasserin aut Victoria Garcia-Cardenas verfasserin aut In Implementation Science BMC, 2006 16(2021), 1, Seite 11 (DE-627)509006191 (DE-600)2225822-X 17485908 nnns volume:16 year:2021 number:1 pages:11 https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 kostenfrei https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/toc/1748-5908 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 11 |
allfields_unstemmed |
10.1186/s13012-021-01138-8 doi (DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 DE-627 ger DE-627 rakwb eng R5-920 Lydia Moussa verfasserin aut Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) Shalom Benrimoj verfasserin aut Katarzyna Musial verfasserin aut Simon Kocbek verfasserin aut Victoria Garcia-Cardenas verfasserin aut In Implementation Science BMC, 2006 16(2021), 1, Seite 11 (DE-627)509006191 (DE-600)2225822-X 17485908 nnns volume:16 year:2021 number:1 pages:11 https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 kostenfrei https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/toc/1748-5908 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 11 |
allfieldsGer |
10.1186/s13012-021-01138-8 doi (DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 DE-627 ger DE-627 rakwb eng R5-920 Lydia Moussa verfasserin aut Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) Shalom Benrimoj verfasserin aut Katarzyna Musial verfasserin aut Simon Kocbek verfasserin aut Victoria Garcia-Cardenas verfasserin aut In Implementation Science BMC, 2006 16(2021), 1, Seite 11 (DE-627)509006191 (DE-600)2225822-X 17485908 nnns volume:16 year:2021 number:1 pages:11 https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 kostenfrei https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/toc/1748-5908 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 11 |
allfieldsSound |
10.1186/s13012-021-01138-8 doi (DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 DE-627 ger DE-627 rakwb eng R5-920 Lydia Moussa verfasserin aut Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) Shalom Benrimoj verfasserin aut Katarzyna Musial verfasserin aut Simon Kocbek verfasserin aut Victoria Garcia-Cardenas verfasserin aut In Implementation Science BMC, 2006 16(2021), 1, Seite 11 (DE-627)509006191 (DE-600)2225822-X 17485908 nnns volume:16 year:2021 number:1 pages:11 https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 kostenfrei https://doi.org/10.1186/s13012-021-01138-8 kostenfrei https://doaj.org/toc/1748-5908 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 11 |
language |
English |
source |
In Implementation Science 16(2021), 1, Seite 11 volume:16 year:2021 number:1 pages:11 |
sourceStr |
In Implementation Science 16(2021), 1, Seite 11 volume:16 year:2021 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Implementation Science |
authorswithroles_txt_mv |
Lydia Moussa @@aut@@ Shalom Benrimoj @@aut@@ Katarzyna Musial @@aut@@ Simon Kocbek @@aut@@ Victoria Garcia-Cardenas @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
509006191 |
id |
DOAJ055302157 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055302157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502063726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13012-021-01138-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055302157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4110dce088fd43549d95c33c55213ed8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lydia Moussa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change facilitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Implementation factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tailored interventions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Facilitation strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmacy practice</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shalom Benrimoj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Musial</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Kocbek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victoria Garcia-Cardenas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Implementation Science</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">16(2021), 1, Seite 11</subfield><subfield code="w">(DE-627)509006191</subfield><subfield code="w">(DE-600)2225822-X</subfield><subfield code="x">17485908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13012-021-01138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4110dce088fd43549d95c33c55213ed8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13012-021-01138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-5908</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Lydia Moussa |
spellingShingle |
Lydia Moussa misc R5-920 misc Change facilitation misc Implementation factors misc Determinants misc Tailored interventions misc Facilitation strategies misc Pharmacy practice misc Medicine (General) Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
authorStr |
Lydia Moussa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)509006191 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
17485908 |
topic_title |
R5-920 Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy Change facilitation Implementation factors Determinants Tailored interventions Facilitation strategies Pharmacy practice |
topic |
misc R5-920 misc Change facilitation misc Implementation factors misc Determinants misc Tailored interventions misc Facilitation strategies misc Pharmacy practice misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc Change facilitation misc Implementation factors misc Determinants misc Tailored interventions misc Facilitation strategies misc Pharmacy practice misc Medicine (General) |
topic_browse |
misc R5-920 misc Change facilitation misc Implementation factors misc Determinants misc Tailored interventions misc Facilitation strategies misc Pharmacy practice misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Implementation Science |
hierarchy_parent_id |
509006191 |
hierarchy_top_title |
Implementation Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)509006191 (DE-600)2225822-X |
title |
Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
ctrlnum |
(DE-627)DOAJ055302157 (DE-599)DOAJ4110dce088fd43549d95c33c55213ed8 |
title_full |
Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
author_sort |
Lydia Moussa |
journal |
Implementation Science |
journalStr |
Implementation Science |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Lydia Moussa Shalom Benrimoj Katarzyna Musial Simon Kocbek Victoria Garcia-Cardenas |
container_volume |
16 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Lydia Moussa |
doi_str_mv |
10.1186/s13012-021-01138-8 |
author2-role |
verfasserin |
title_sort |
data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
callnumber |
R5-920 |
title_auth |
Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
abstract |
Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. |
abstractGer |
Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. |
abstract_unstemmed |
Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy |
url |
https://doi.org/10.1186/s13012-021-01138-8 https://doaj.org/article/4110dce088fd43549d95c33c55213ed8 https://doaj.org/toc/1748-5908 |
remote_bool |
true |
author2 |
Shalom Benrimoj Katarzyna Musial Simon Kocbek Victoria Garcia-Cardenas |
author2Str |
Shalom Benrimoj Katarzyna Musial Simon Kocbek Victoria Garcia-Cardenas |
ppnlink |
509006191 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13012-021-01138-8 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T14:10:27.238Z |
_version_ |
1803567316070301696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055302157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502063726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13012-021-01138-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055302157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4110dce088fd43549d95c33c55213ed8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lydia Moussa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven approach for tailoring facilitation strategies to overcome implementation barriers in community pharmacy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Implementation research has delved into barriers to implementing change and interventions for the implementation of innovation in practice. There remains a gap, however, that fails to connect implementation barriers to the most effective implementation strategies and provide a more tailored approach during implementation. This study aimed to explore barriers for the implementation of professional services in community pharmacies and to predict the effectiveness of facilitation strategies to overcome implementation barriers using machine learning techniques. Methods Six change facilitators facilitated a 2-year change programme aimed at implementing professional services across community pharmacies in Australia. A mixed methods approach was used where barriers were identified by change facilitators during the implementation study. Change facilitators trialled and recorded tailored facilitation strategies delivered to overcome identified barriers. Barriers were coded according to implementation factors derived from the Consolidated Framework for Implementation Research and the Theoretical Domains Framework. Tailored facilitation strategies were coded into 16 facilitation categories. To predict the effectiveness of these strategies, data mining with random forest was used to provide the highest level of accuracy. A predictive resolution percentage was established for each implementation strategy in relation to the barriers that were resolved by that particular strategy. Results During the 2-year programme, 1131 barriers and facilitation strategies were recorded by change facilitators. The most frequently identified barriers were a ‘lack of ability to plan for change’, ‘lack of internal supporters for the change’, ‘lack of knowledge and experience’, ‘lack of monitoring and feedback’, ‘lack of individual alignment with the change’, ‘undefined change objectives’, ‘lack of objective feedback’ and ‘lack of time’. The random forest algorithm used was able to provide 96.9% prediction accuracy. The strategy category with the highest predicted resolution rate across the most number of implementation barriers was ‘to empower stakeholders to develop objectives and solve problems’. Conclusions Results from this study have provided a better understanding of implementation barriers in community pharmacy and how data-driven approaches can be used to predict the effectiveness of facilitation strategies to overcome implementation barriers. Tailored facilitation strategies such as these can increase the rate of real-time implementation of innovations in healthcare, leading to an industry that can confidently and efficiently adapt to continuous change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change facilitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Implementation factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tailored interventions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Facilitation strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmacy practice</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shalom Benrimoj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Musial</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Kocbek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victoria Garcia-Cardenas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Implementation Science</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">16(2021), 1, Seite 11</subfield><subfield code="w">(DE-627)509006191</subfield><subfield code="w">(DE-600)2225822-X</subfield><subfield code="x">17485908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13012-021-01138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4110dce088fd43549d95c33c55213ed8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13012-021-01138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-5908</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.4008055 |