Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study
Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT f...
Ausführliche Beschreibung
Autor*in: |
Chen-Yi Xie [verfasserIn] Yi-Huai Hu [verfasserIn] Joshua Wing-Kei Ho [verfasserIn] Lu-Jun Han [verfasserIn] Hong Yang [verfasserIn] Jing Wen [verfasserIn] Ka-On Lam [verfasserIn] Ian Yu-Hong Wong [verfasserIn] Simon Ying-Kit Law [verfasserIn] Keith Wan-Hang Chiu [verfasserIn] Jian-Hua Fu [verfasserIn] Varut Vardhanabhuti [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cancers - MDPI AG, 2010, 13(2021), 9, p 2145 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:9, p 2145 |
Links: |
---|
DOI / URN: |
10.3390/cancers13092145 |
---|
Katalog-ID: |
DOAJ055328644 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055328644 | ||
003 | DE-627 | ||
005 | 20240412182626.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cancers13092145 |2 doi | |
035 | |a (DE-627)DOAJ055328644 | ||
035 | |a (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Chen-Yi Xie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. | ||
650 | 4 | |a esophageal squamous cell carcinoma | |
650 | 4 | |a neoadjuvant chemoradiotherapy | |
650 | 4 | |a prognosis | |
650 | 4 | |a radiogenomic | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Yi-Huai Hu |e verfasserin |4 aut | |
700 | 0 | |a Joshua Wing-Kei Ho |e verfasserin |4 aut | |
700 | 0 | |a Lu-Jun Han |e verfasserin |4 aut | |
700 | 0 | |a Hong Yang |e verfasserin |4 aut | |
700 | 0 | |a Jing Wen |e verfasserin |4 aut | |
700 | 0 | |a Ka-On Lam |e verfasserin |4 aut | |
700 | 0 | |a Ian Yu-Hong Wong |e verfasserin |4 aut | |
700 | 0 | |a Simon Ying-Kit Law |e verfasserin |4 aut | |
700 | 0 | |a Keith Wan-Hang Chiu |e verfasserin |4 aut | |
700 | 0 | |a Jian-Hua Fu |e verfasserin |4 aut | |
700 | 0 | |a Varut Vardhanabhuti |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cancers |d MDPI AG, 2010 |g 13(2021), 9, p 2145 |w (DE-627)614095670 |w (DE-600)2527080-1 |x 20726694 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:9, p 2145 |
856 | 4 | 0 | |u https://doi.org/10.3390/cancers13092145 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-6694/13/9/2145 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6694 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 9, p 2145 |
author_variant |
c y x cyx y h h yhh j w k h jwkh l j h ljh h y hy j w jw k o l kol i y h w iyhw s y k l sykl k w h c kwhc j h f jhf v v vv |
---|---|
matchkey_str |
article:20726694:2021----::sngnmcfaueeetomtoirdoisieiemrvsrgotctopromnenoalavneeo |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.3390/cancers13092145 doi (DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c DE-627 ger DE-627 rakwb eng RC254-282 Chen-Yi Xie verfasserin aut Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens Yi-Huai Hu verfasserin aut Joshua Wing-Kei Ho verfasserin aut Lu-Jun Han verfasserin aut Hong Yang verfasserin aut Jing Wen verfasserin aut Ka-On Lam verfasserin aut Ian Yu-Hong Wong verfasserin aut Simon Ying-Kit Law verfasserin aut Keith Wan-Hang Chiu verfasserin aut Jian-Hua Fu verfasserin aut Varut Vardhanabhuti verfasserin aut In Cancers MDPI AG, 2010 13(2021), 9, p 2145 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:9, p 2145 https://doi.org/10.3390/cancers13092145 kostenfrei https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c kostenfrei https://www.mdpi.com/2072-6694/13/9/2145 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 9, p 2145 |
spelling |
10.3390/cancers13092145 doi (DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c DE-627 ger DE-627 rakwb eng RC254-282 Chen-Yi Xie verfasserin aut Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens Yi-Huai Hu verfasserin aut Joshua Wing-Kei Ho verfasserin aut Lu-Jun Han verfasserin aut Hong Yang verfasserin aut Jing Wen verfasserin aut Ka-On Lam verfasserin aut Ian Yu-Hong Wong verfasserin aut Simon Ying-Kit Law verfasserin aut Keith Wan-Hang Chiu verfasserin aut Jian-Hua Fu verfasserin aut Varut Vardhanabhuti verfasserin aut In Cancers MDPI AG, 2010 13(2021), 9, p 2145 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:9, p 2145 https://doi.org/10.3390/cancers13092145 kostenfrei https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c kostenfrei https://www.mdpi.com/2072-6694/13/9/2145 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 9, p 2145 |
allfields_unstemmed |
10.3390/cancers13092145 doi (DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c DE-627 ger DE-627 rakwb eng RC254-282 Chen-Yi Xie verfasserin aut Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens Yi-Huai Hu verfasserin aut Joshua Wing-Kei Ho verfasserin aut Lu-Jun Han verfasserin aut Hong Yang verfasserin aut Jing Wen verfasserin aut Ka-On Lam verfasserin aut Ian Yu-Hong Wong verfasserin aut Simon Ying-Kit Law verfasserin aut Keith Wan-Hang Chiu verfasserin aut Jian-Hua Fu verfasserin aut Varut Vardhanabhuti verfasserin aut In Cancers MDPI AG, 2010 13(2021), 9, p 2145 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:9, p 2145 https://doi.org/10.3390/cancers13092145 kostenfrei https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c kostenfrei https://www.mdpi.com/2072-6694/13/9/2145 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 9, p 2145 |
allfieldsGer |
10.3390/cancers13092145 doi (DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c DE-627 ger DE-627 rakwb eng RC254-282 Chen-Yi Xie verfasserin aut Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens Yi-Huai Hu verfasserin aut Joshua Wing-Kei Ho verfasserin aut Lu-Jun Han verfasserin aut Hong Yang verfasserin aut Jing Wen verfasserin aut Ka-On Lam verfasserin aut Ian Yu-Hong Wong verfasserin aut Simon Ying-Kit Law verfasserin aut Keith Wan-Hang Chiu verfasserin aut Jian-Hua Fu verfasserin aut Varut Vardhanabhuti verfasserin aut In Cancers MDPI AG, 2010 13(2021), 9, p 2145 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:9, p 2145 https://doi.org/10.3390/cancers13092145 kostenfrei https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c kostenfrei https://www.mdpi.com/2072-6694/13/9/2145 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 9, p 2145 |
allfieldsSound |
10.3390/cancers13092145 doi (DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c DE-627 ger DE-627 rakwb eng RC254-282 Chen-Yi Xie verfasserin aut Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens Yi-Huai Hu verfasserin aut Joshua Wing-Kei Ho verfasserin aut Lu-Jun Han verfasserin aut Hong Yang verfasserin aut Jing Wen verfasserin aut Ka-On Lam verfasserin aut Ian Yu-Hong Wong verfasserin aut Simon Ying-Kit Law verfasserin aut Keith Wan-Hang Chiu verfasserin aut Jian-Hua Fu verfasserin aut Varut Vardhanabhuti verfasserin aut In Cancers MDPI AG, 2010 13(2021), 9, p 2145 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:13 year:2021 number:9, p 2145 https://doi.org/10.3390/cancers13092145 kostenfrei https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c kostenfrei https://www.mdpi.com/2072-6694/13/9/2145 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 9, p 2145 |
language |
English |
source |
In Cancers 13(2021), 9, p 2145 volume:13 year:2021 number:9, p 2145 |
sourceStr |
In Cancers 13(2021), 9, p 2145 volume:13 year:2021 number:9, p 2145 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Cancers |
authorswithroles_txt_mv |
Chen-Yi Xie @@aut@@ Yi-Huai Hu @@aut@@ Joshua Wing-Kei Ho @@aut@@ Lu-Jun Han @@aut@@ Hong Yang @@aut@@ Jing Wen @@aut@@ Ka-On Lam @@aut@@ Ian Yu-Hong Wong @@aut@@ Simon Ying-Kit Law @@aut@@ Keith Wan-Hang Chiu @@aut@@ Jian-Hua Fu @@aut@@ Varut Vardhanabhuti @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
614095670 |
id |
DOAJ055328644 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055328644</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412182626.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers13092145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055328644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen-Yi Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">esophageal squamous cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neoadjuvant chemoradiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiogenomic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi-Huai Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joshua Wing-Kei Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu-Jun Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ka-On Lam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian Yu-Hong Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Ying-Kit Law</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keith Wan-Hang Chiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian-Hua Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Varut Vardhanabhuti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 9, p 2145</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 2145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers13092145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/13/9/2145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 2145</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Chen-Yi Xie |
spellingShingle |
Chen-Yi Xie misc RC254-282 misc esophageal squamous cell carcinoma misc neoadjuvant chemoradiotherapy misc prognosis misc radiogenomic misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
authorStr |
Chen-Yi Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614095670 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20726694 |
topic_title |
RC254-282 Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study esophageal squamous cell carcinoma neoadjuvant chemoradiotherapy prognosis radiogenomic |
topic |
misc RC254-282 misc esophageal squamous cell carcinoma misc neoadjuvant chemoradiotherapy misc prognosis misc radiogenomic misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc esophageal squamous cell carcinoma misc neoadjuvant chemoradiotherapy misc prognosis misc radiogenomic misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc esophageal squamous cell carcinoma misc neoadjuvant chemoradiotherapy misc prognosis misc radiogenomic misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancers |
hierarchy_parent_id |
614095670 |
hierarchy_top_title |
Cancers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614095670 (DE-600)2527080-1 |
title |
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
ctrlnum |
(DE-627)DOAJ055328644 (DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c |
title_full |
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
author_sort |
Chen-Yi Xie |
journal |
Cancers |
journalStr |
Cancers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Chen-Yi Xie Yi-Huai Hu Joshua Wing-Kei Ho Lu-Jun Han Hong Yang Jing Wen Ka-On Lam Ian Yu-Hong Wong Simon Ying-Kit Law Keith Wan-Hang Chiu Jian-Hua Fu Varut Vardhanabhuti |
container_volume |
13 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen-Yi Xie |
doi_str_mv |
10.3390/cancers13092145 |
author2-role |
verfasserin |
title_sort |
using genomics feature selection method in radiomics pipeline improves prognostication performance in locally advanced esophageal squamous cell carcinoma—a pilot study |
callnumber |
RC254-282 |
title_auth |
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
abstract |
Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. |
abstractGer |
Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. |
abstract_unstemmed |
Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 2145 |
title_short |
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study |
url |
https://doi.org/10.3390/cancers13092145 https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c https://www.mdpi.com/2072-6694/13/9/2145 https://doaj.org/toc/2072-6694 |
remote_bool |
true |
author2 |
Yi-Huai Hu Joshua Wing-Kei Ho Lu-Jun Han Hong Yang Jing Wen Ka-On Lam Ian Yu-Hong Wong Simon Ying-Kit Law Keith Wan-Hang Chiu Jian-Hua Fu Varut Vardhanabhuti |
author2Str |
Yi-Huai Hu Joshua Wing-Kei Ho Lu-Jun Han Hong Yang Jing Wen Ka-On Lam Ian Yu-Hong Wong Simon Ying-Kit Law Keith Wan-Hang Chiu Jian-Hua Fu Varut Vardhanabhuti |
ppnlink |
614095670 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cancers13092145 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T14:19:54.015Z |
_version_ |
1803567910375915520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055328644</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412182626.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers13092145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055328644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68854aadbb1f4e7dbeae4d6e6608be6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen-Yi Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced Esophageal Squamous Cell Carcinoma—A Pilot Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set were used to detect differentially expressed (DE) genes between patients with and without relapse. Radiomic features that were correlated to DE genes were selected, followed by additional machine learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating the radiomic signature and prognostic clinical characteristics was established for DFS estimation and validated. Results: The radiomic signature with DE genes feature selection achieved better performance for DFS prediction than without. The nomogram incorporating the radiomic signature and lymph nodal status significantly stratified patients into high and low-risk groups for DFS (<i<p</i< < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was useful for radiomic feature selection. The established radiomic signature was prognostic for DFS. The radiomic nomogram could provide a valuable prediction for individualized long-term survival.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">esophageal squamous cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neoadjuvant chemoradiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiogenomic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi-Huai Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joshua Wing-Kei Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu-Jun Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ka-On Lam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian Yu-Hong Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Ying-Kit Law</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keith Wan-Hang Chiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian-Hua Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Varut Vardhanabhuti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 9, p 2145</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 2145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers13092145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68854aadbb1f4e7dbeae4d6e6608be6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/13/9/2145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 2145</subfield></datafield></record></collection>
|
score |
7.3985195 |