An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis
The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estima...
Ausführliche Beschreibung
Autor*in: |
Jindong Wang [verfasserIn] Xin Chen [verfasserIn] Haiyang Zhao [verfasserIn] Yanyang Li [verfasserIn] Delong Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 115256-115269 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:115256-115269 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3105538 |
---|
Katalog-ID: |
DOAJ055433367 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055433367 | ||
003 | DE-627 | ||
005 | 20230502094043.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3105538 |2 doi | |
035 | |a (DE-627)DOAJ055433367 | ||
035 | |a (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jindong Wang |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. | ||
650 | 4 | |a Underdetermined blind source separation | |
650 | 4 | |a mixing matrix estimation | |
650 | 4 | |a sparse component analysis | |
650 | 4 | |a K-means | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Xin Chen |e verfasserin |4 aut | |
700 | 0 | |a Haiyang Zhao |e verfasserin |4 aut | |
700 | 0 | |a Yanyang Li |e verfasserin |4 aut | |
700 | 0 | |a Delong Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 115256-115269 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:115256-115269 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3105538 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9514888/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 115256-115269 |
author_variant |
j w jw x c xc h z hz y l yl d y dy |
---|---|
matchkey_str |
article:21693536:2021----::nfetvtotgcutrnmtofriigarxsiainnntnaeuudreemndlnsucsprt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3105538 doi (DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 DE-627 ger DE-627 rakwb eng TK1-9971 Jindong Wang verfasserin aut An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering Xin Chen verfasserin aut Haiyang Zhao verfasserin aut Yanyang Li verfasserin aut Delong Yu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 115256-115269 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:115256-115269 https://doi.org/10.1109/ACCESS.2021.3105538 kostenfrei https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 kostenfrei https://ieeexplore.ieee.org/document/9514888/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 115256-115269 |
spelling |
10.1109/ACCESS.2021.3105538 doi (DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 DE-627 ger DE-627 rakwb eng TK1-9971 Jindong Wang verfasserin aut An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering Xin Chen verfasserin aut Haiyang Zhao verfasserin aut Yanyang Li verfasserin aut Delong Yu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 115256-115269 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:115256-115269 https://doi.org/10.1109/ACCESS.2021.3105538 kostenfrei https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 kostenfrei https://ieeexplore.ieee.org/document/9514888/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 115256-115269 |
allfields_unstemmed |
10.1109/ACCESS.2021.3105538 doi (DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 DE-627 ger DE-627 rakwb eng TK1-9971 Jindong Wang verfasserin aut An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering Xin Chen verfasserin aut Haiyang Zhao verfasserin aut Yanyang Li verfasserin aut Delong Yu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 115256-115269 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:115256-115269 https://doi.org/10.1109/ACCESS.2021.3105538 kostenfrei https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 kostenfrei https://ieeexplore.ieee.org/document/9514888/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 115256-115269 |
allfieldsGer |
10.1109/ACCESS.2021.3105538 doi (DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 DE-627 ger DE-627 rakwb eng TK1-9971 Jindong Wang verfasserin aut An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering Xin Chen verfasserin aut Haiyang Zhao verfasserin aut Yanyang Li verfasserin aut Delong Yu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 115256-115269 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:115256-115269 https://doi.org/10.1109/ACCESS.2021.3105538 kostenfrei https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 kostenfrei https://ieeexplore.ieee.org/document/9514888/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 115256-115269 |
allfieldsSound |
10.1109/ACCESS.2021.3105538 doi (DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 DE-627 ger DE-627 rakwb eng TK1-9971 Jindong Wang verfasserin aut An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering Xin Chen verfasserin aut Haiyang Zhao verfasserin aut Yanyang Li verfasserin aut Delong Yu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 115256-115269 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:115256-115269 https://doi.org/10.1109/ACCESS.2021.3105538 kostenfrei https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 kostenfrei https://ieeexplore.ieee.org/document/9514888/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 115256-115269 |
language |
English |
source |
In IEEE Access 9(2021), Seite 115256-115269 volume:9 year:2021 pages:115256-115269 |
sourceStr |
In IEEE Access 9(2021), Seite 115256-115269 volume:9 year:2021 pages:115256-115269 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jindong Wang @@aut@@ Xin Chen @@aut@@ Haiyang Zhao @@aut@@ Yanyang Li @@aut@@ Delong Yu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ055433367 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055433367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502094043.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055433367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1fca62fa116d471393ebddc2640e7971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jindong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underdetermined blind source separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixing matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sparse component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Delong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 115256-115269</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:115256-115269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105538</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1fca62fa116d471393ebddc2640e7971</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9514888/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">115256-115269</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jindong Wang |
spellingShingle |
Jindong Wang misc TK1-9971 misc Underdetermined blind source separation misc mixing matrix estimation misc sparse component analysis misc K-means misc Electrical engineering. Electronics. Nuclear engineering An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
authorStr |
Jindong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis Underdetermined blind source separation mixing matrix estimation sparse component analysis K-means |
topic |
misc TK1-9971 misc Underdetermined blind source separation misc mixing matrix estimation misc sparse component analysis misc K-means misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Underdetermined blind source separation misc mixing matrix estimation misc sparse component analysis misc K-means misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Underdetermined blind source separation misc mixing matrix estimation misc sparse component analysis misc K-means misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
ctrlnum |
(DE-627)DOAJ055433367 (DE-599)DOAJ1fca62fa116d471393ebddc2640e7971 |
title_full |
An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
author_sort |
Jindong Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
115256 |
author_browse |
Jindong Wang Xin Chen Haiyang Zhao Yanyang Li Delong Yu |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jindong Wang |
doi_str_mv |
10.1109/ACCESS.2021.3105538 |
author2-role |
verfasserin |
title_sort |
effective two-stage clustering method for mixing matrix estimation in instantaneous underdetermined blind source separation and its application in fault diagnosis |
callnumber |
TK1-9971 |
title_auth |
An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
abstract |
The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. |
abstractGer |
The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. |
abstract_unstemmed |
The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis |
url |
https://doi.org/10.1109/ACCESS.2021.3105538 https://doaj.org/article/1fca62fa116d471393ebddc2640e7971 https://ieeexplore.ieee.org/document/9514888/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Xin Chen Haiyang Zhao Yanyang Li Delong Yu |
author2Str |
Xin Chen Haiyang Zhao Yanyang Li Delong Yu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3105538 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T14:56:37.295Z |
_version_ |
1803570220682444800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055433367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502094043.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055433367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1fca62fa116d471393ebddc2640e7971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jindong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The underdetermined blind source separation (UBSS) has been considered to be a novel signal processing technique, which can separate the fault source signals from their mixtures. The mixing matrix estimation is a major step in the UBSS, this paper focuses on boosting the accuracy level of the estimated mixing matrix in the underdetermined case. Since the traditional clustering algorithms may not capture the signal characteristics well and secure a satisfactory estimation of the mixing matrix, an effective two-stage clustering algorithm is proposed to estimate the mixing matrix through a combination of hierarchical clustering and K-means. More specifically, first, the sum of frequency points energy in the time-frequency (TF) domain is calculated to estimate the number of source signals before clustering, and the initial clustering centers are obtained with a hierarchical clustering algorithm. Second, after eliminating outliers deviating from the initial clustering centers with the cosine distance, the new clustering centers are obtained by recalculating the mean value of each sub-cluster. Finally, the new clustering centers are set as the initial clustering centers of the K-means algorithm to estimate the mixing matrix. Extensive simulations and experiments show that the proposed method can effectively separate the source signals and ensure an estimate of the mixing matrix that is substantially more accurate than the K-means algorithm alone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underdetermined blind source separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixing matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sparse component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Delong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 115256-115269</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:115256-115269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105538</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1fca62fa116d471393ebddc2640e7971</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9514888/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">115256-115269</subfield></datafield></record></collection>
|
score |
7.400487 |