The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability
Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by usin...
Ausführliche Beschreibung
Autor*in: |
Jennifer Derrien [verfasserIn] Catherine Guérin-Charbonnel [verfasserIn] Victor Gaborit [verfasserIn] Loïc Campion [verfasserIn] Magali Devic [verfasserIn] Elise Douillard [verfasserIn] Nathalie Roi [verfasserIn] Hervé Avet-Loiseau [verfasserIn] Olivier Decaux [verfasserIn] Thierry Facon [verfasserIn] Jan-Philipp Mallm [verfasserIn] Roland Eils [verfasserIn] Nikhil C. Munshi [verfasserIn] Philippe Moreau [verfasserIn] Carl Herrmann [verfasserIn] Florence Magrangeas [verfasserIn] Stéphane Minvielle [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genome Medicine - BMC, 2016, 13(2021), 1, Seite 21 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:1 ; pages:21 |
Links: |
---|
DOI / URN: |
10.1186/s13073-021-00938-3 |
---|
Katalog-ID: |
DOAJ055476376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055476376 | ||
003 | DE-627 | ||
005 | 20230308191532.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13073-021-00938-3 |2 doi | |
035 | |a (DE-627)DOAJ055476376 | ||
035 | |a (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Jennifer Derrien |e verfasserin |4 aut | |
245 | 1 | 4 | |a The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. | ||
650 | 4 | |a Multiple myeloma | |
650 | 4 | |a Disordered DNA methylation | |
650 | 4 | |a Epipolymorphism | |
650 | 4 | |a Epiallele switching | |
650 | 4 | |a Inter- and intrapatient heterogeneity | |
650 | 4 | |a Transcriptomic variability | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Genetics | |
700 | 0 | |a Catherine Guérin-Charbonnel |e verfasserin |4 aut | |
700 | 0 | |a Victor Gaborit |e verfasserin |4 aut | |
700 | 0 | |a Loïc Campion |e verfasserin |4 aut | |
700 | 0 | |a Magali Devic |e verfasserin |4 aut | |
700 | 0 | |a Elise Douillard |e verfasserin |4 aut | |
700 | 0 | |a Nathalie Roi |e verfasserin |4 aut | |
700 | 0 | |a Hervé Avet-Loiseau |e verfasserin |4 aut | |
700 | 0 | |a Olivier Decaux |e verfasserin |4 aut | |
700 | 0 | |a Thierry Facon |e verfasserin |4 aut | |
700 | 0 | |a Jan-Philipp Mallm |e verfasserin |4 aut | |
700 | 0 | |a Roland Eils |e verfasserin |4 aut | |
700 | 0 | |a Nikhil C. Munshi |e verfasserin |4 aut | |
700 | 0 | |a Philippe Moreau |e verfasserin |4 aut | |
700 | 0 | |a Carl Herrmann |e verfasserin |4 aut | |
700 | 0 | |a Florence Magrangeas |e verfasserin |4 aut | |
700 | 0 | |a Stéphane Minvielle |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genome Medicine |d BMC, 2016 |g 13(2021), 1, Seite 21 |w (DE-627)594424275 |w (DE-600)2484394-5 |x 1756994X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:1 |g pages:21 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13073-021-00938-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s13073-021-00938-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1756-994X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 1 |h 21 |
author_variant |
j d jd c g c cgc v g vg l c lc m d md e d ed n r nr h a l hal o d od t f tf j p m jpm r e re n c m ncm p m pm c h ch f m fm s m sm |
---|---|
matchkey_str |
article:1756994X:2021----::hdaehltolnsaefutpeylmsosxesvitrnitaainhtrgniyh |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.1186/s13073-021-00938-3 doi (DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 DE-627 ger DE-627 rakwb eng QH426-470 Jennifer Derrien verfasserin aut The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics Catherine Guérin-Charbonnel verfasserin aut Victor Gaborit verfasserin aut Loïc Campion verfasserin aut Magali Devic verfasserin aut Elise Douillard verfasserin aut Nathalie Roi verfasserin aut Hervé Avet-Loiseau verfasserin aut Olivier Decaux verfasserin aut Thierry Facon verfasserin aut Jan-Philipp Mallm verfasserin aut Roland Eils verfasserin aut Nikhil C. Munshi verfasserin aut Philippe Moreau verfasserin aut Carl Herrmann verfasserin aut Florence Magrangeas verfasserin aut Stéphane Minvielle verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 21 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:21 https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 kostenfrei https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 21 |
spelling |
10.1186/s13073-021-00938-3 doi (DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 DE-627 ger DE-627 rakwb eng QH426-470 Jennifer Derrien verfasserin aut The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics Catherine Guérin-Charbonnel verfasserin aut Victor Gaborit verfasserin aut Loïc Campion verfasserin aut Magali Devic verfasserin aut Elise Douillard verfasserin aut Nathalie Roi verfasserin aut Hervé Avet-Loiseau verfasserin aut Olivier Decaux verfasserin aut Thierry Facon verfasserin aut Jan-Philipp Mallm verfasserin aut Roland Eils verfasserin aut Nikhil C. Munshi verfasserin aut Philippe Moreau verfasserin aut Carl Herrmann verfasserin aut Florence Magrangeas verfasserin aut Stéphane Minvielle verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 21 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:21 https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 kostenfrei https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 21 |
allfields_unstemmed |
10.1186/s13073-021-00938-3 doi (DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 DE-627 ger DE-627 rakwb eng QH426-470 Jennifer Derrien verfasserin aut The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics Catherine Guérin-Charbonnel verfasserin aut Victor Gaborit verfasserin aut Loïc Campion verfasserin aut Magali Devic verfasserin aut Elise Douillard verfasserin aut Nathalie Roi verfasserin aut Hervé Avet-Loiseau verfasserin aut Olivier Decaux verfasserin aut Thierry Facon verfasserin aut Jan-Philipp Mallm verfasserin aut Roland Eils verfasserin aut Nikhil C. Munshi verfasserin aut Philippe Moreau verfasserin aut Carl Herrmann verfasserin aut Florence Magrangeas verfasserin aut Stéphane Minvielle verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 21 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:21 https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 kostenfrei https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 21 |
allfieldsGer |
10.1186/s13073-021-00938-3 doi (DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 DE-627 ger DE-627 rakwb eng QH426-470 Jennifer Derrien verfasserin aut The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics Catherine Guérin-Charbonnel verfasserin aut Victor Gaborit verfasserin aut Loïc Campion verfasserin aut Magali Devic verfasserin aut Elise Douillard verfasserin aut Nathalie Roi verfasserin aut Hervé Avet-Loiseau verfasserin aut Olivier Decaux verfasserin aut Thierry Facon verfasserin aut Jan-Philipp Mallm verfasserin aut Roland Eils verfasserin aut Nikhil C. Munshi verfasserin aut Philippe Moreau verfasserin aut Carl Herrmann verfasserin aut Florence Magrangeas verfasserin aut Stéphane Minvielle verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 21 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:21 https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 kostenfrei https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 21 |
allfieldsSound |
10.1186/s13073-021-00938-3 doi (DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 DE-627 ger DE-627 rakwb eng QH426-470 Jennifer Derrien verfasserin aut The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics Catherine Guérin-Charbonnel verfasserin aut Victor Gaborit verfasserin aut Loïc Campion verfasserin aut Magali Devic verfasserin aut Elise Douillard verfasserin aut Nathalie Roi verfasserin aut Hervé Avet-Loiseau verfasserin aut Olivier Decaux verfasserin aut Thierry Facon verfasserin aut Jan-Philipp Mallm verfasserin aut Roland Eils verfasserin aut Nikhil C. Munshi verfasserin aut Philippe Moreau verfasserin aut Carl Herrmann verfasserin aut Florence Magrangeas verfasserin aut Stéphane Minvielle verfasserin aut In Genome Medicine BMC, 2016 13(2021), 1, Seite 21 (DE-627)594424275 (DE-600)2484394-5 1756994X nnns volume:13 year:2021 number:1 pages:21 https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 kostenfrei https://doi.org/10.1186/s13073-021-00938-3 kostenfrei https://doaj.org/toc/1756-994X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 21 |
language |
English |
source |
In Genome Medicine 13(2021), 1, Seite 21 volume:13 year:2021 number:1 pages:21 |
sourceStr |
In Genome Medicine 13(2021), 1, Seite 21 volume:13 year:2021 number:1 pages:21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability Medicine R Genetics |
isfreeaccess_bool |
true |
container_title |
Genome Medicine |
authorswithroles_txt_mv |
Jennifer Derrien @@aut@@ Catherine Guérin-Charbonnel @@aut@@ Victor Gaborit @@aut@@ Loïc Campion @@aut@@ Magali Devic @@aut@@ Elise Douillard @@aut@@ Nathalie Roi @@aut@@ Hervé Avet-Loiseau @@aut@@ Olivier Decaux @@aut@@ Thierry Facon @@aut@@ Jan-Philipp Mallm @@aut@@ Roland Eils @@aut@@ Nikhil C. Munshi @@aut@@ Philippe Moreau @@aut@@ Carl Herrmann @@aut@@ Florence Magrangeas @@aut@@ Stéphane Minvielle @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
594424275 |
id |
DOAJ055476376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055476376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308191532.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13073-021-00938-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055476376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a911b1129d149468316660d33d6e2e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jennifer Derrien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple myeloma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disordered DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epipolymorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epiallele switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inter- and intrapatient heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptomic variability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Catherine Guérin-Charbonnel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Gaborit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Loïc Campion</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magali Devic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elise Douillard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Roi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hervé Avet-Loiseau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olivier Decaux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierry Facon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan-Philipp Mallm</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roland Eils</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikhil C. Munshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe Moreau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carl Herrmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florence Magrangeas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stéphane Minvielle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genome Medicine</subfield><subfield code="d">BMC, 2016</subfield><subfield code="g">13(2021), 1, Seite 21</subfield><subfield code="w">(DE-627)594424275</subfield><subfield code="w">(DE-600)2484394-5</subfield><subfield code="x">1756994X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00938-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a911b1129d149468316660d33d6e2e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00938-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-994X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">21</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jennifer Derrien |
spellingShingle |
Jennifer Derrien misc QH426-470 misc Multiple myeloma misc Disordered DNA methylation misc Epipolymorphism misc Epiallele switching misc Inter- and intrapatient heterogeneity misc Transcriptomic variability misc Medicine misc R misc Genetics The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
authorStr |
Jennifer Derrien |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)594424275 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
1756994X |
topic_title |
QH426-470 The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability Multiple myeloma Disordered DNA methylation Epipolymorphism Epiallele switching Inter- and intrapatient heterogeneity Transcriptomic variability |
topic |
misc QH426-470 misc Multiple myeloma misc Disordered DNA methylation misc Epipolymorphism misc Epiallele switching misc Inter- and intrapatient heterogeneity misc Transcriptomic variability misc Medicine misc R misc Genetics |
topic_unstemmed |
misc QH426-470 misc Multiple myeloma misc Disordered DNA methylation misc Epipolymorphism misc Epiallele switching misc Inter- and intrapatient heterogeneity misc Transcriptomic variability misc Medicine misc R misc Genetics |
topic_browse |
misc QH426-470 misc Multiple myeloma misc Disordered DNA methylation misc Epipolymorphism misc Epiallele switching misc Inter- and intrapatient heterogeneity misc Transcriptomic variability misc Medicine misc R misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genome Medicine |
hierarchy_parent_id |
594424275 |
hierarchy_top_title |
Genome Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)594424275 (DE-600)2484394-5 |
title |
The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
ctrlnum |
(DE-627)DOAJ055476376 (DE-599)DOAJ4a911b1129d149468316660d33d6e2e4 |
title_full |
The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
author_sort |
Jennifer Derrien |
journal |
Genome Medicine |
journalStr |
Genome Medicine |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
21 |
author_browse |
Jennifer Derrien Catherine Guérin-Charbonnel Victor Gaborit Loïc Campion Magali Devic Elise Douillard Nathalie Roi Hervé Avet-Loiseau Olivier Decaux Thierry Facon Jan-Philipp Mallm Roland Eils Nikhil C. Munshi Philippe Moreau Carl Herrmann Florence Magrangeas Stéphane Minvielle |
container_volume |
13 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Jennifer Derrien |
doi_str_mv |
10.1186/s13073-021-00938-3 |
author2-role |
verfasserin |
title_sort |
dna methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
callnumber |
QH426-470 |
title_auth |
The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
abstract |
Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. |
abstractGer |
Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. |
abstract_unstemmed |
Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability |
url |
https://doi.org/10.1186/s13073-021-00938-3 https://doaj.org/article/4a911b1129d149468316660d33d6e2e4 https://doaj.org/toc/1756-994X |
remote_bool |
true |
author2 |
Catherine Guérin-Charbonnel Victor Gaborit Loïc Campion Magali Devic Elise Douillard Nathalie Roi Hervé Avet-Loiseau Olivier Decaux Thierry Facon Jan-Philipp Mallm Roland Eils Nikhil C. Munshi Philippe Moreau Carl Herrmann Florence Magrangeas Stéphane Minvielle |
author2Str |
Catherine Guérin-Charbonnel Victor Gaborit Loïc Campion Magali Devic Elise Douillard Nathalie Roi Hervé Avet-Loiseau Olivier Decaux Thierry Facon Jan-Philipp Mallm Roland Eils Nikhil C. Munshi Philippe Moreau Carl Herrmann Florence Magrangeas Stéphane Minvielle |
ppnlink |
594424275 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13073-021-00938-3 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T15:12:05.646Z |
_version_ |
1803571194134265856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055476376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308191532.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13073-021-00938-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055476376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a911b1129d149468316660d33d6e2e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jennifer Derrien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. Methods Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. Results We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. Conclusions We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple myeloma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disordered DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epipolymorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epiallele switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inter- and intrapatient heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptomic variability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Catherine Guérin-Charbonnel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Gaborit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Loïc Campion</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magali Devic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elise Douillard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Roi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hervé Avet-Loiseau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olivier Decaux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierry Facon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan-Philipp Mallm</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roland Eils</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikhil C. Munshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe Moreau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carl Herrmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florence Magrangeas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stéphane Minvielle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genome Medicine</subfield><subfield code="d">BMC, 2016</subfield><subfield code="g">13(2021), 1, Seite 21</subfield><subfield code="w">(DE-627)594424275</subfield><subfield code="w">(DE-600)2484394-5</subfield><subfield code="x">1756994X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00938-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a911b1129d149468316660d33d6e2e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13073-021-00938-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-994X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">21</subfield></datafield></record></collection>
|
score |
7.400732 |