<i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation
In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for me...
Ausführliche Beschreibung
Autor*in: |
Mourad Kchaou [verfasserIn] Houssem Jerbi [verfasserIn] Naim Ben Ali [verfasserIn] Haitham Alsaif [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Actuators - MDPI AG, 2013, 10(2021), 8, p 196 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:8, p 196 |
Links: |
---|
DOI / URN: |
10.3390/act10080196 |
---|
Katalog-ID: |
DOAJ055820298 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055820298 | ||
003 | DE-627 | ||
005 | 20240412164551.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/act10080196 |2 doi | |
035 | |a (DE-627)DOAJ055820298 | ||
035 | |a (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
050 | 0 | |a TK1001-1841 | |
100 | 0 | |a Mourad Kchaou |e verfasserin |4 aut | |
245 | 1 | 0 | |a <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. | ||
650 | 4 | |a discrete singular system | |
650 | 4 | |a actuator failure | |
650 | 4 | |a sensor saturation | |
650 | 4 | |a reliable dynamic output feedback | |
650 | 4 | |a <i<H</i<<sub<∞</sub< control | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
700 | 0 | |a Houssem Jerbi |e verfasserin |4 aut | |
700 | 0 | |a Naim Ben Ali |e verfasserin |4 aut | |
700 | 0 | |a Haitham Alsaif |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Actuators |d MDPI AG, 2013 |g 10(2021), 8, p 196 |w (DE-627)726491802 |w (DE-600)2682469-3 |x 20760825 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:8, p 196 |
856 | 4 | 0 | |u https://doi.org/10.3390/act10080196 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/55345a0b4acd407594fb5792659f1745 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-0825/10/8/196 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-0825 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 8, p 196 |
author_variant |
m k mk h j hj n b a nba h a ha |
---|---|
matchkey_str |
article:20760825:2021----::hsburlaldnmcuptedakotolreinodsrttmsnuas |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.3390/act10080196 doi (DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Mourad Kchaou verfasserin aut <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Houssem Jerbi verfasserin aut Naim Ben Ali verfasserin aut Haitham Alsaif verfasserin aut In Actuators MDPI AG, 2013 10(2021), 8, p 196 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:10 year:2021 number:8, p 196 https://doi.org/10.3390/act10080196 kostenfrei https://doaj.org/article/55345a0b4acd407594fb5792659f1745 kostenfrei https://www.mdpi.com/2076-0825/10/8/196 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 8, p 196 |
spelling |
10.3390/act10080196 doi (DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Mourad Kchaou verfasserin aut <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Houssem Jerbi verfasserin aut Naim Ben Ali verfasserin aut Haitham Alsaif verfasserin aut In Actuators MDPI AG, 2013 10(2021), 8, p 196 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:10 year:2021 number:8, p 196 https://doi.org/10.3390/act10080196 kostenfrei https://doaj.org/article/55345a0b4acd407594fb5792659f1745 kostenfrei https://www.mdpi.com/2076-0825/10/8/196 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 8, p 196 |
allfields_unstemmed |
10.3390/act10080196 doi (DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Mourad Kchaou verfasserin aut <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Houssem Jerbi verfasserin aut Naim Ben Ali verfasserin aut Haitham Alsaif verfasserin aut In Actuators MDPI AG, 2013 10(2021), 8, p 196 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:10 year:2021 number:8, p 196 https://doi.org/10.3390/act10080196 kostenfrei https://doaj.org/article/55345a0b4acd407594fb5792659f1745 kostenfrei https://www.mdpi.com/2076-0825/10/8/196 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 8, p 196 |
allfieldsGer |
10.3390/act10080196 doi (DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Mourad Kchaou verfasserin aut <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Houssem Jerbi verfasserin aut Naim Ben Ali verfasserin aut Haitham Alsaif verfasserin aut In Actuators MDPI AG, 2013 10(2021), 8, p 196 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:10 year:2021 number:8, p 196 https://doi.org/10.3390/act10080196 kostenfrei https://doaj.org/article/55345a0b4acd407594fb5792659f1745 kostenfrei https://www.mdpi.com/2076-0825/10/8/196 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 8, p 196 |
allfieldsSound |
10.3390/act10080196 doi (DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Mourad Kchaou verfasserin aut <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Houssem Jerbi verfasserin aut Naim Ben Ali verfasserin aut Haitham Alsaif verfasserin aut In Actuators MDPI AG, 2013 10(2021), 8, p 196 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:10 year:2021 number:8, p 196 https://doi.org/10.3390/act10080196 kostenfrei https://doaj.org/article/55345a0b4acd407594fb5792659f1745 kostenfrei https://www.mdpi.com/2076-0825/10/8/196 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 8, p 196 |
language |
English |
source |
In Actuators 10(2021), 8, p 196 volume:10 year:2021 number:8, p 196 |
sourceStr |
In Actuators 10(2021), 8, p 196 volume:10 year:2021 number:8, p 196 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations |
isfreeaccess_bool |
true |
container_title |
Actuators |
authorswithroles_txt_mv |
Mourad Kchaou @@aut@@ Houssem Jerbi @@aut@@ Naim Ben Ali @@aut@@ Haitham Alsaif @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
726491802 |
id |
DOAJ055820298 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055820298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412164551.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/act10080196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055820298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ55345a0b4acd407594fb5792659f1745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mourad Kchaou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete singular system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator failure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliable dynamic output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<H</i<<sub<∞</sub< control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houssem Jerbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naim Ben Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haitham Alsaif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Actuators</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 8, p 196</subfield><subfield code="w">(DE-627)726491802</subfield><subfield code="w">(DE-600)2682469-3</subfield><subfield code="x">20760825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 196</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/act10080196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/55345a0b4acd407594fb5792659f1745</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-0825/10/8/196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-0825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 196</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mourad Kchaou |
spellingShingle |
Mourad Kchaou misc TA401-492 misc TK1001-1841 misc discrete singular system misc actuator failure misc sensor saturation misc reliable dynamic output feedback misc <i<H</i<<sub<∞</sub< control misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
authorStr |
Mourad Kchaou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)726491802 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
20760825 |
topic_title |
TA401-492 TK1001-1841 <i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation discrete singular system actuator failure sensor saturation reliable dynamic output feedback <i<H</i<<sub<∞</sub< control |
topic |
misc TA401-492 misc TK1001-1841 misc discrete singular system misc actuator failure misc sensor saturation misc reliable dynamic output feedback misc <i<H</i<<sub<∞</sub< control misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
topic_unstemmed |
misc TA401-492 misc TK1001-1841 misc discrete singular system misc actuator failure misc sensor saturation misc reliable dynamic output feedback misc <i<H</i<<sub<∞</sub< control misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
topic_browse |
misc TA401-492 misc TK1001-1841 misc discrete singular system misc actuator failure misc sensor saturation misc reliable dynamic output feedback misc <i<H</i<<sub<∞</sub< control misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Actuators |
hierarchy_parent_id |
726491802 |
hierarchy_top_title |
Actuators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)726491802 (DE-600)2682469-3 |
title |
<i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
ctrlnum |
(DE-627)DOAJ055820298 (DE-599)DOAJ55345a0b4acd407594fb5792659f1745 |
title_full |
<i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
author_sort |
Mourad Kchaou |
journal |
Actuators |
journalStr |
Actuators |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Mourad Kchaou Houssem Jerbi Naim Ben Ali Haitham Alsaif |
container_volume |
10 |
class |
TA401-492 TK1001-1841 |
format_se |
Elektronische Aufsätze |
author-letter |
Mourad Kchaou |
doi_str_mv |
10.3390/act10080196 |
author2-role |
verfasserin |
title_sort |
<i<h</i<<sub<∞</sub< reliable dynamic output-feedback controller design for discrete-time singular systems with sensor saturation |
callnumber |
TA401-492 |
title_auth |
<i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
abstract |
In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. |
abstractGer |
In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. |
abstract_unstemmed |
In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 196 |
title_short |
<i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation |
url |
https://doi.org/10.3390/act10080196 https://doaj.org/article/55345a0b4acd407594fb5792659f1745 https://www.mdpi.com/2076-0825/10/8/196 https://doaj.org/toc/2076-0825 |
remote_bool |
true |
author2 |
Houssem Jerbi Naim Ben Ali Haitham Alsaif |
author2Str |
Houssem Jerbi Naim Ben Ali Haitham Alsaif |
ppnlink |
726491802 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/act10080196 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T17:12:58.534Z |
_version_ |
1803578799333310464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055820298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412164551.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/act10080196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055820298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ55345a0b4acd407594fb5792659f1745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mourad Kchaou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><i<H</i<<sub<∞</sub< Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we investigate the <i<H</i<<sub<∞</sub< fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mo<γ</mo<</semantics<</math<</inline-formula< level of the <i<H</i<<sub<∞</sub< disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the <i<H</i<<sub<∞</sub< admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete singular system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator failure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliable dynamic output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<H</i<<sub<∞</sub< control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houssem Jerbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naim Ben Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haitham Alsaif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Actuators</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 8, p 196</subfield><subfield code="w">(DE-627)726491802</subfield><subfield code="w">(DE-600)2682469-3</subfield><subfield code="x">20760825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 196</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/act10080196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/55345a0b4acd407594fb5792659f1745</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-0825/10/8/196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-0825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 196</subfield></datafield></record></collection>
|
score |
7.3999376 |