Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications
This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablatio...
Ausführliche Beschreibung
Autor*in: |
Keisuke Nemoto [verfasserIn] Yasutaka Hanada [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Micromachines - MDPI AG, 2010, 9(2018), 12, p 662 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2018 ; number:12, p 662 |
Links: |
---|
DOI / URN: |
10.3390/mi9120662 |
---|
Katalog-ID: |
DOAJ055858341 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ055858341 | ||
003 | DE-627 | ||
005 | 20230308193915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/mi9120662 |2 doi | |
035 | |a (DE-627)DOAJ055858341 | ||
035 | |a (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Keisuke Nemoto |e verfasserin |4 aut | |
245 | 1 | 0 | |a Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. | ||
650 | 4 | |a nanosecond laser | |
650 | 4 | |a ablation | |
650 | 4 | |a etching | |
650 | 4 | |a microfabrication | |
650 | 4 | |a fluoropolymer | |
650 | 4 | |a CYTOP | |
650 | 4 | |a microfluidics | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Yasutaka Hanada |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Micromachines |d MDPI AG, 2010 |g 9(2018), 12, p 662 |w (DE-627)665016069 |w (DE-600)2620864-7 |x 2072666X |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2018 |g number:12, p 662 |
856 | 4 | 0 | |u https://doi.org/10.3390/mi9120662 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-666X/9/12/662 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-666X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2018 |e 12, p 662 |
author_variant |
k n kn y h yh |
---|---|
matchkey_str |
article:2072666X:2018----::thnassealtootevrnprnfurplmryouigaiulsruswdhadu |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TJ |
publishDate |
2018 |
allfields |
10.3390/mi9120662 doi (DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 DE-627 ger DE-627 rakwb eng TJ1-1570 Keisuke Nemoto verfasserin aut Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery Yasutaka Hanada verfasserin aut In Micromachines MDPI AG, 2010 9(2018), 12, p 662 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:9 year:2018 number:12, p 662 https://doi.org/10.3390/mi9120662 kostenfrei https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 kostenfrei https://www.mdpi.com/2072-666X/9/12/662 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 12, p 662 |
spelling |
10.3390/mi9120662 doi (DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 DE-627 ger DE-627 rakwb eng TJ1-1570 Keisuke Nemoto verfasserin aut Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery Yasutaka Hanada verfasserin aut In Micromachines MDPI AG, 2010 9(2018), 12, p 662 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:9 year:2018 number:12, p 662 https://doi.org/10.3390/mi9120662 kostenfrei https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 kostenfrei https://www.mdpi.com/2072-666X/9/12/662 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 12, p 662 |
allfields_unstemmed |
10.3390/mi9120662 doi (DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 DE-627 ger DE-627 rakwb eng TJ1-1570 Keisuke Nemoto verfasserin aut Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery Yasutaka Hanada verfasserin aut In Micromachines MDPI AG, 2010 9(2018), 12, p 662 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:9 year:2018 number:12, p 662 https://doi.org/10.3390/mi9120662 kostenfrei https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 kostenfrei https://www.mdpi.com/2072-666X/9/12/662 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 12, p 662 |
allfieldsGer |
10.3390/mi9120662 doi (DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 DE-627 ger DE-627 rakwb eng TJ1-1570 Keisuke Nemoto verfasserin aut Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery Yasutaka Hanada verfasserin aut In Micromachines MDPI AG, 2010 9(2018), 12, p 662 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:9 year:2018 number:12, p 662 https://doi.org/10.3390/mi9120662 kostenfrei https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 kostenfrei https://www.mdpi.com/2072-666X/9/12/662 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 12, p 662 |
allfieldsSound |
10.3390/mi9120662 doi (DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 DE-627 ger DE-627 rakwb eng TJ1-1570 Keisuke Nemoto verfasserin aut Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery Yasutaka Hanada verfasserin aut In Micromachines MDPI AG, 2010 9(2018), 12, p 662 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:9 year:2018 number:12, p 662 https://doi.org/10.3390/mi9120662 kostenfrei https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 kostenfrei https://www.mdpi.com/2072-666X/9/12/662 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 12, p 662 |
language |
English |
source |
In Micromachines 9(2018), 12, p 662 volume:9 year:2018 number:12, p 662 |
sourceStr |
In Micromachines 9(2018), 12, p 662 volume:9 year:2018 number:12, p 662 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Micromachines |
authorswithroles_txt_mv |
Keisuke Nemoto @@aut@@ Yasutaka Hanada @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
665016069 |
id |
DOAJ055858341 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055858341</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308193915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi9120662</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055858341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb47896c401bb409b8f077b32352e76d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Keisuke Nemoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluoropolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CYTOP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasutaka Hanada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">9(2018), 12, p 662</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12, p 662</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi9120662</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b47896c401bb409b8f077b32352e76d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/9/12/662</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2018</subfield><subfield code="e">12, p 662</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Keisuke Nemoto |
spellingShingle |
Keisuke Nemoto misc TJ1-1570 misc nanosecond laser misc ablation misc etching misc microfabrication misc fluoropolymer misc CYTOP misc microfluidics misc Mechanical engineering and machinery Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
authorStr |
Keisuke Nemoto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)665016069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
2072666X |
topic_title |
TJ1-1570 Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications nanosecond laser ablation etching microfabrication fluoropolymer CYTOP microfluidics |
topic |
misc TJ1-1570 misc nanosecond laser misc ablation misc etching misc microfabrication misc fluoropolymer misc CYTOP misc microfluidics misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc nanosecond laser misc ablation misc etching misc microfabrication misc fluoropolymer misc CYTOP misc microfluidics misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc nanosecond laser misc ablation misc etching misc microfabrication misc fluoropolymer misc CYTOP misc microfluidics misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Micromachines |
hierarchy_parent_id |
665016069 |
hierarchy_top_title |
Micromachines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)665016069 (DE-600)2620864-7 |
title |
Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
ctrlnum |
(DE-627)DOAJ055858341 (DE-599)DOAJb47896c401bb409b8f077b32352e76d3 |
title_full |
Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
author_sort |
Keisuke Nemoto |
journal |
Micromachines |
journalStr |
Micromachines |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Keisuke Nemoto Yasutaka Hanada |
container_volume |
9 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Keisuke Nemoto |
doi_str_mv |
10.3390/mi9120662 |
author2-role |
verfasserin |
title_sort |
etching-assisted ablation of the uv-transparent fluoropolymer cytop using various laser pulse widths and subsequent microfluidic applications |
callnumber |
TJ1-1570 |
title_auth |
Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
abstract |
This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. |
abstractGer |
This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. |
abstract_unstemmed |
This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 662 |
title_short |
Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications |
url |
https://doi.org/10.3390/mi9120662 https://doaj.org/article/b47896c401bb409b8f077b32352e76d3 https://www.mdpi.com/2072-666X/9/12/662 https://doaj.org/toc/2072-666X |
remote_bool |
true |
author2 |
Yasutaka Hanada |
author2Str |
Yasutaka Hanada |
ppnlink |
665016069 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/mi9120662 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T17:26:52.568Z |
_version_ |
1803579673884491776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ055858341</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308193915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi9120662</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ055858341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb47896c401bb409b8f077b32352e76d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Keisuke Nemoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluoropolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CYTOP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasutaka Hanada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">9(2018), 12, p 662</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12, p 662</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi9120662</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b47896c401bb409b8f077b32352e76d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/9/12/662</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2018</subfield><subfield code="e">12, p 662</subfield></datafield></record></collection>
|
score |
7.401124 |