Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity
Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this...
Ausführliche Beschreibung
Autor*in: |
Carlos Pupiales [verfasserIn] Daniela Laselva [verfasserIn] Ilker Demirkol [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 114929-114944 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:114929-114944 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3105177 |
---|
Katalog-ID: |
DOAJ056020929 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056020929 | ||
003 | DE-627 | ||
005 | 20230503020613.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3105177 |2 doi | |
035 | |a (DE-627)DOAJ056020929 | ||
035 | |a (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Carlos Pupiales |e verfasserin |4 aut | |
245 | 1 | 0 | |a Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. | ||
650 | 4 | |a Flow control | |
650 | 4 | |a multi-connectivity | |
650 | 4 | |a dual-connectivity | |
650 | 4 | |a 5G | |
650 | 4 | |a traffic aggregation | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Daniela Laselva |e verfasserin |4 aut | |
700 | 0 | |a Ilker Demirkol |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 114929-114944 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:114929-114944 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3105177 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9514878/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 114929-114944 |
author_variant |
c p cp d l dl i d id |
---|---|
matchkey_str |
article:21693536:2021----::aaiyncnetoaaelwotomcaimoefcetrfiageainn |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3105177 doi (DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd DE-627 ger DE-627 rakwb eng TK1-9971 Carlos Pupiales verfasserin aut Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering Daniela Laselva verfasserin aut Ilker Demirkol verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 114929-114944 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:114929-114944 https://doi.org/10.1109/ACCESS.2021.3105177 kostenfrei https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd kostenfrei https://ieeexplore.ieee.org/document/9514878/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 114929-114944 |
spelling |
10.1109/ACCESS.2021.3105177 doi (DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd DE-627 ger DE-627 rakwb eng TK1-9971 Carlos Pupiales verfasserin aut Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering Daniela Laselva verfasserin aut Ilker Demirkol verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 114929-114944 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:114929-114944 https://doi.org/10.1109/ACCESS.2021.3105177 kostenfrei https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd kostenfrei https://ieeexplore.ieee.org/document/9514878/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 114929-114944 |
allfields_unstemmed |
10.1109/ACCESS.2021.3105177 doi (DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd DE-627 ger DE-627 rakwb eng TK1-9971 Carlos Pupiales verfasserin aut Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering Daniela Laselva verfasserin aut Ilker Demirkol verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 114929-114944 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:114929-114944 https://doi.org/10.1109/ACCESS.2021.3105177 kostenfrei https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd kostenfrei https://ieeexplore.ieee.org/document/9514878/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 114929-114944 |
allfieldsGer |
10.1109/ACCESS.2021.3105177 doi (DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd DE-627 ger DE-627 rakwb eng TK1-9971 Carlos Pupiales verfasserin aut Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering Daniela Laselva verfasserin aut Ilker Demirkol verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 114929-114944 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:114929-114944 https://doi.org/10.1109/ACCESS.2021.3105177 kostenfrei https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd kostenfrei https://ieeexplore.ieee.org/document/9514878/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 114929-114944 |
allfieldsSound |
10.1109/ACCESS.2021.3105177 doi (DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd DE-627 ger DE-627 rakwb eng TK1-9971 Carlos Pupiales verfasserin aut Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering Daniela Laselva verfasserin aut Ilker Demirkol verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 114929-114944 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:114929-114944 https://doi.org/10.1109/ACCESS.2021.3105177 kostenfrei https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd kostenfrei https://ieeexplore.ieee.org/document/9514878/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 114929-114944 |
language |
English |
source |
In IEEE Access 9(2021), Seite 114929-114944 volume:9 year:2021 pages:114929-114944 |
sourceStr |
In IEEE Access 9(2021), Seite 114929-114944 volume:9 year:2021 pages:114929-114944 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flow control multi-connectivity dual-connectivity 5G traffic aggregation Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Carlos Pupiales @@aut@@ Daniela Laselva @@aut@@ Ilker Demirkol @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056020929 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056020929</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503020613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105177</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056020929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Carlos Pupiales</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual-connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic aggregation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Laselva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilker Demirkol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 114929-114944</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:114929-114944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105177</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9514878/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">114929-114944</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Carlos Pupiales |
spellingShingle |
Carlos Pupiales misc TK1-9971 misc Flow control misc multi-connectivity misc dual-connectivity misc 5G misc traffic aggregation misc Electrical engineering. Electronics. Nuclear engineering Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
authorStr |
Carlos Pupiales |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity Flow control multi-connectivity dual-connectivity 5G traffic aggregation |
topic |
misc TK1-9971 misc Flow control misc multi-connectivity misc dual-connectivity misc 5G misc traffic aggregation misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Flow control misc multi-connectivity misc dual-connectivity misc 5G misc traffic aggregation misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Flow control misc multi-connectivity misc dual-connectivity misc 5G misc traffic aggregation misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
ctrlnum |
(DE-627)DOAJ056020929 (DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd |
title_full |
Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
author_sort |
Carlos Pupiales |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
114929 |
author_browse |
Carlos Pupiales Daniela Laselva Ilker Demirkol |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Carlos Pupiales |
doi_str_mv |
10.1109/ACCESS.2021.3105177 |
author2-role |
verfasserin |
title_sort |
capacity and congestion aware flow control mechanism for efficient traffic aggregation in multi-radio dual connectivity |
callnumber |
TK1-9971 |
title_auth |
Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
abstract |
Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. |
abstractGer |
Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. |
abstract_unstemmed |
Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity |
url |
https://doi.org/10.1109/ACCESS.2021.3105177 https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd https://ieeexplore.ieee.org/document/9514878/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Daniela Laselva Ilker Demirkol |
author2Str |
Daniela Laselva Ilker Demirkol |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3105177 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:24:46.368Z |
_version_ |
1803583316424654849 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056020929</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503020613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3105177</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056020929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16cd0bed42754b73a3569c7d58f57acd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Carlos Pupiales</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multi-Radio Dual Connectivity (MR-DC) is a crucial 3GPP technology that enables traffic aggregation to leverage the radio resources of two base stations (BSs), thereby increasing the per-user data rate. However, the traffic aggregation management in MR-DC is left up to vendor implementation. In this paper, we show that enabling an efficient traffic aggregation method is crucial to increase the throughput performance of both TCP- and UDP-based applications in MR-DC operation. Targeting the state-of-the-art gap on this topic, we propose a flow control mechanism, which efficiently aggregates traffic based on the assigned radio resources and buffering delay statistics of both BSs. The proposed traffic aggregation mechanism is applicable irrespective of the employed MR-DC architecture option, MAC packet scheduler design, and transport layer protocol in use. By means of exhaustive testbed experiments, we show that the proposed method achieves at least 85% and 95% of the theoretical aggregate throughput when employing MR-DC for TCP and UDP traffic, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual-connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic aggregation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Laselva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilker Demirkol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 114929-114944</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:114929-114944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3105177</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16cd0bed42754b73a3569c7d58f57acd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9514878/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">114929-114944</subfield></datafield></record></collection>
|
score |
7.4025593 |