Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe...
Ausführliche Beschreibung
Autor*in: |
Olga Koba-Ucun [verfasserIn] Tuğba Ölmez Hanci [verfasserIn] Idil Arslan-Alaton [verfasserIn] Samira Arefi-Oskoui [verfasserIn] Alireza Khataee [verfasserIn] Mehmet Kobya [verfasserIn] Yasin Orooji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 26(2021), 2, p 395 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2021 ; number:2, p 395 |
Links: |
---|
DOI / URN: |
10.3390/molecules26020395 |
---|
Katalog-ID: |
DOAJ056055692 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056055692 | ||
003 | DE-627 | ||
005 | 20240414080152.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules26020395 |2 doi | |
035 | |a (DE-627)DOAJ056055692 | ||
035 | |a (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Olga Koba-Ucun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. | ||
650 | 4 | |a layered double hydroxide (LDH) catalysts | |
650 | 4 | |a <i<Pseudokirchneriella subcapitata</i< | |
650 | 4 | |a <i<Daphnia magna</i< | |
650 | 4 | |a <i<Spirodela polyrhiza</i< | |
650 | 4 | |a <i<Vibrio fischeri</i< | |
650 | 4 | |a surface analysis | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Tuğba Ölmez Hanci |e verfasserin |4 aut | |
700 | 0 | |a Idil Arslan-Alaton |e verfasserin |4 aut | |
700 | 0 | |a Samira Arefi-Oskoui |e verfasserin |4 aut | |
700 | 0 | |a Alireza Khataee |e verfasserin |4 aut | |
700 | 0 | |a Mehmet Kobya |e verfasserin |4 aut | |
700 | 0 | |a Yasin Orooji |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 26(2021), 2, p 395 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2021 |g number:2, p 395 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules26020395 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1420-3049/26/2/395 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2021 |e 2, p 395 |
author_variant |
o k u oku t ö h töh i a a iaa s a o sao a k ak m k mk y o yo |
---|---|
matchkey_str |
article:14203049:2021----::oiiyfneaeedulhdoieoifrnognss |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QD |
publishDate |
2021 |
allfields |
10.3390/molecules26020395 doi (DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 DE-627 ger DE-627 rakwb eng QD241-441 Olga Koba-Ucun verfasserin aut Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry Tuğba Ölmez Hanci verfasserin aut Idil Arslan-Alaton verfasserin aut Samira Arefi-Oskoui verfasserin aut Alireza Khataee verfasserin aut Mehmet Kobya verfasserin aut Yasin Orooji verfasserin aut In Molecules MDPI AG, 2003 26(2021), 2, p 395 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:26 year:2021 number:2, p 395 https://doi.org/10.3390/molecules26020395 kostenfrei https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 kostenfrei https://www.mdpi.com/1420-3049/26/2/395 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 395 |
spelling |
10.3390/molecules26020395 doi (DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 DE-627 ger DE-627 rakwb eng QD241-441 Olga Koba-Ucun verfasserin aut Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry Tuğba Ölmez Hanci verfasserin aut Idil Arslan-Alaton verfasserin aut Samira Arefi-Oskoui verfasserin aut Alireza Khataee verfasserin aut Mehmet Kobya verfasserin aut Yasin Orooji verfasserin aut In Molecules MDPI AG, 2003 26(2021), 2, p 395 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:26 year:2021 number:2, p 395 https://doi.org/10.3390/molecules26020395 kostenfrei https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 kostenfrei https://www.mdpi.com/1420-3049/26/2/395 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 395 |
allfields_unstemmed |
10.3390/molecules26020395 doi (DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 DE-627 ger DE-627 rakwb eng QD241-441 Olga Koba-Ucun verfasserin aut Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry Tuğba Ölmez Hanci verfasserin aut Idil Arslan-Alaton verfasserin aut Samira Arefi-Oskoui verfasserin aut Alireza Khataee verfasserin aut Mehmet Kobya verfasserin aut Yasin Orooji verfasserin aut In Molecules MDPI AG, 2003 26(2021), 2, p 395 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:26 year:2021 number:2, p 395 https://doi.org/10.3390/molecules26020395 kostenfrei https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 kostenfrei https://www.mdpi.com/1420-3049/26/2/395 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 395 |
allfieldsGer |
10.3390/molecules26020395 doi (DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 DE-627 ger DE-627 rakwb eng QD241-441 Olga Koba-Ucun verfasserin aut Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry Tuğba Ölmez Hanci verfasserin aut Idil Arslan-Alaton verfasserin aut Samira Arefi-Oskoui verfasserin aut Alireza Khataee verfasserin aut Mehmet Kobya verfasserin aut Yasin Orooji verfasserin aut In Molecules MDPI AG, 2003 26(2021), 2, p 395 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:26 year:2021 number:2, p 395 https://doi.org/10.3390/molecules26020395 kostenfrei https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 kostenfrei https://www.mdpi.com/1420-3049/26/2/395 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 395 |
allfieldsSound |
10.3390/molecules26020395 doi (DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 DE-627 ger DE-627 rakwb eng QD241-441 Olga Koba-Ucun verfasserin aut Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry Tuğba Ölmez Hanci verfasserin aut Idil Arslan-Alaton verfasserin aut Samira Arefi-Oskoui verfasserin aut Alireza Khataee verfasserin aut Mehmet Kobya verfasserin aut Yasin Orooji verfasserin aut In Molecules MDPI AG, 2003 26(2021), 2, p 395 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:26 year:2021 number:2, p 395 https://doi.org/10.3390/molecules26020395 kostenfrei https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 kostenfrei https://www.mdpi.com/1420-3049/26/2/395 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 2, p 395 |
language |
English |
source |
In Molecules 26(2021), 2, p 395 volume:26 year:2021 number:2, p 395 |
sourceStr |
In Molecules 26(2021), 2, p 395 volume:26 year:2021 number:2, p 395 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Olga Koba-Ucun @@aut@@ Tuğba Ölmez Hanci @@aut@@ Idil Arslan-Alaton @@aut@@ Samira Arefi-Oskoui @@aut@@ Alireza Khataee @@aut@@ Mehmet Kobya @@aut@@ Yasin Orooji @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ056055692 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056055692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414080152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules26020395</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056055692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olga Koba-Ucun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">layered double hydroxide (LDH) catalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pseudokirchneriella subcapitata</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Daphnia magna</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Vibrio fischeri</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tuğba Ölmez Hanci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idil Arslan-Alaton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samira Arefi-Oskoui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Khataee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehmet Kobya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Orooji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">26(2021), 2, p 395</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 395</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules26020395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/26/2/395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 395</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Olga Koba-Ucun |
spellingShingle |
Olga Koba-Ucun misc QD241-441 misc layered double hydroxide (LDH) catalysts misc <i<Pseudokirchneriella subcapitata</i< misc <i<Daphnia magna</i< misc <i<Spirodela polyrhiza</i< misc <i<Vibrio fischeri</i< misc surface analysis misc Organic chemistry Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
authorStr |
Olga Koba-Ucun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment layered double hydroxide (LDH) catalysts <i<Pseudokirchneriella subcapitata</i< <i<Daphnia magna</i< <i<Spirodela polyrhiza</i< <i<Vibrio fischeri</i< surface analysis |
topic |
misc QD241-441 misc layered double hydroxide (LDH) catalysts misc <i<Pseudokirchneriella subcapitata</i< misc <i<Daphnia magna</i< misc <i<Spirodela polyrhiza</i< misc <i<Vibrio fischeri</i< misc surface analysis misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc layered double hydroxide (LDH) catalysts misc <i<Pseudokirchneriella subcapitata</i< misc <i<Daphnia magna</i< misc <i<Spirodela polyrhiza</i< misc <i<Vibrio fischeri</i< misc surface analysis misc Organic chemistry |
topic_browse |
misc QD241-441 misc layered double hydroxide (LDH) catalysts misc <i<Pseudokirchneriella subcapitata</i< misc <i<Daphnia magna</i< misc <i<Spirodela polyrhiza</i< misc <i<Vibrio fischeri</i< misc surface analysis misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
ctrlnum |
(DE-627)DOAJ056055692 (DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792 |
title_full |
Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
author_sort |
Olga Koba-Ucun |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Olga Koba-Ucun Tuğba Ölmez Hanci Idil Arslan-Alaton Samira Arefi-Oskoui Alireza Khataee Mehmet Kobya Yasin Orooji |
container_volume |
26 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Olga Koba-Ucun |
doi_str_mv |
10.3390/molecules26020395 |
author2-role |
verfasserin |
title_sort |
toxicity of zn-fe layered double hydroxide to different organisms in the aquatic environment |
callnumber |
QD241-441 |
title_auth |
Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
abstract |
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. |
abstractGer |
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. |
abstract_unstemmed |
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 395 |
title_short |
Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment |
url |
https://doi.org/10.3390/molecules26020395 https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792 https://www.mdpi.com/1420-3049/26/2/395 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Tuğba Ölmez Hanci Idil Arslan-Alaton Samira Arefi-Oskoui Alireza Khataee Mehmet Kobya Yasin Orooji |
author2Str |
Tuğba Ölmez Hanci Idil Arslan-Alaton Samira Arefi-Oskoui Alireza Khataee Mehmet Kobya Yasin Orooji |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules26020395 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T18:37:10.270Z |
_version_ |
1803584096462438400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056055692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414080152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules26020395</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056055692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf134a6d2936456b9aeaacc34cfc3792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olga Koba-Ucun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium <i<Vibrio fischeri</i<, the freshwater microalga <i<Pseudokirchneriella subcapitata</i<, the freshwater crustacean <i<Daphnia magna</i<, and the duckweed <i<Spirodela polyrhiza</i<. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">layered double hydroxide (LDH) catalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pseudokirchneriella subcapitata</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Daphnia magna</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Vibrio fischeri</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tuğba Ölmez Hanci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idil Arslan-Alaton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samira Arefi-Oskoui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Khataee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehmet Kobya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Orooji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">26(2021), 2, p 395</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 395</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules26020395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf134a6d2936456b9aeaacc34cfc3792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/26/2/395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 395</subfield></datafield></record></collection>
|
score |
7.40108 |