Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia
Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltm...
Ausführliche Beschreibung
Autor*in: |
Iman Salehi Hikouei [verfasserIn] Jason Christian [verfasserIn] S. Sonny Kim [verfasserIn] Lori A. Sutter [verfasserIn] Stephan A. Durham [verfasserIn] Jidong J. Yang [verfasserIn] Charles Gray Vickery [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Infrastructures - MDPI AG, 2017, 6(2021), 5, p 70 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2021 ; number:5, p 70 |
Links: |
---|
DOI / URN: |
10.3390/infrastructures6050070 |
---|
Katalog-ID: |
DOAJ056057849 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056057849 | ||
003 | DE-627 | ||
005 | 20240412182252.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/infrastructures6050070 |2 doi | |
035 | |a (DE-627)DOAJ056057849 | ||
035 | |a (DE-599)DOAJ903486dcea474090ad997920283b732b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Iman Salehi Hikouei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. | ||
650 | 4 | |a saltmarsh | |
650 | 4 | |a halophyte | |
650 | 4 | |a bulk density | |
650 | 4 | |a random forest model | |
650 | 4 | |a redox potential | |
650 | 4 | |a machine learning | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Jason Christian |e verfasserin |4 aut | |
700 | 0 | |a S. Sonny Kim |e verfasserin |4 aut | |
700 | 0 | |a Lori A. Sutter |e verfasserin |4 aut | |
700 | 0 | |a Stephan A. Durham |e verfasserin |4 aut | |
700 | 0 | |a Jidong J. Yang |e verfasserin |4 aut | |
700 | 0 | |a Charles Gray Vickery |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Infrastructures |d MDPI AG, 2017 |g 6(2021), 5, p 70 |w (DE-627)1015391176 |x 24123811 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2021 |g number:5, p 70 |
856 | 4 | 0 | |u https://doi.org/10.3390/infrastructures6050070 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/903486dcea474090ad997920283b732b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2412-3811/6/5/70 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2412-3811 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2021 |e 5, p 70 |
author_variant |
i s h ish j c jc s s k ssk l a s las s a d sad j j y jjy c g v cgv |
---|---|
matchkey_str |
article:24123811:2021----::sornofrsmdlodniyhrltosismnvgttvseisatassipoeteadnesi |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/infrastructures6050070 doi (DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b DE-627 ger DE-627 rakwb eng Iman Salehi Hikouei verfasserin aut Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T Jason Christian verfasserin aut S. Sonny Kim verfasserin aut Lori A. Sutter verfasserin aut Stephan A. Durham verfasserin aut Jidong J. Yang verfasserin aut Charles Gray Vickery verfasserin aut In Infrastructures MDPI AG, 2017 6(2021), 5, p 70 (DE-627)1015391176 24123811 nnns volume:6 year:2021 number:5, p 70 https://doi.org/10.3390/infrastructures6050070 kostenfrei https://doaj.org/article/903486dcea474090ad997920283b732b kostenfrei https://www.mdpi.com/2412-3811/6/5/70 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 6 2021 5, p 70 |
spelling |
10.3390/infrastructures6050070 doi (DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b DE-627 ger DE-627 rakwb eng Iman Salehi Hikouei verfasserin aut Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T Jason Christian verfasserin aut S. Sonny Kim verfasserin aut Lori A. Sutter verfasserin aut Stephan A. Durham verfasserin aut Jidong J. Yang verfasserin aut Charles Gray Vickery verfasserin aut In Infrastructures MDPI AG, 2017 6(2021), 5, p 70 (DE-627)1015391176 24123811 nnns volume:6 year:2021 number:5, p 70 https://doi.org/10.3390/infrastructures6050070 kostenfrei https://doaj.org/article/903486dcea474090ad997920283b732b kostenfrei https://www.mdpi.com/2412-3811/6/5/70 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 6 2021 5, p 70 |
allfields_unstemmed |
10.3390/infrastructures6050070 doi (DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b DE-627 ger DE-627 rakwb eng Iman Salehi Hikouei verfasserin aut Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T Jason Christian verfasserin aut S. Sonny Kim verfasserin aut Lori A. Sutter verfasserin aut Stephan A. Durham verfasserin aut Jidong J. Yang verfasserin aut Charles Gray Vickery verfasserin aut In Infrastructures MDPI AG, 2017 6(2021), 5, p 70 (DE-627)1015391176 24123811 nnns volume:6 year:2021 number:5, p 70 https://doi.org/10.3390/infrastructures6050070 kostenfrei https://doaj.org/article/903486dcea474090ad997920283b732b kostenfrei https://www.mdpi.com/2412-3811/6/5/70 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 6 2021 5, p 70 |
allfieldsGer |
10.3390/infrastructures6050070 doi (DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b DE-627 ger DE-627 rakwb eng Iman Salehi Hikouei verfasserin aut Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T Jason Christian verfasserin aut S. Sonny Kim verfasserin aut Lori A. Sutter verfasserin aut Stephan A. Durham verfasserin aut Jidong J. Yang verfasserin aut Charles Gray Vickery verfasserin aut In Infrastructures MDPI AG, 2017 6(2021), 5, p 70 (DE-627)1015391176 24123811 nnns volume:6 year:2021 number:5, p 70 https://doi.org/10.3390/infrastructures6050070 kostenfrei https://doaj.org/article/903486dcea474090ad997920283b732b kostenfrei https://www.mdpi.com/2412-3811/6/5/70 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 6 2021 5, p 70 |
allfieldsSound |
10.3390/infrastructures6050070 doi (DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b DE-627 ger DE-627 rakwb eng Iman Salehi Hikouei verfasserin aut Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T Jason Christian verfasserin aut S. Sonny Kim verfasserin aut Lori A. Sutter verfasserin aut Stephan A. Durham verfasserin aut Jidong J. Yang verfasserin aut Charles Gray Vickery verfasserin aut In Infrastructures MDPI AG, 2017 6(2021), 5, p 70 (DE-627)1015391176 24123811 nnns volume:6 year:2021 number:5, p 70 https://doi.org/10.3390/infrastructures6050070 kostenfrei https://doaj.org/article/903486dcea474090ad997920283b732b kostenfrei https://www.mdpi.com/2412-3811/6/5/70 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 6 2021 5, p 70 |
language |
English |
source |
In Infrastructures 6(2021), 5, p 70 volume:6 year:2021 number:5, p 70 |
sourceStr |
In Infrastructures 6(2021), 5, p 70 volume:6 year:2021 number:5, p 70 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
saltmarsh halophyte bulk density random forest model redox potential machine learning Technology T |
isfreeaccess_bool |
true |
container_title |
Infrastructures |
authorswithroles_txt_mv |
Iman Salehi Hikouei @@aut@@ Jason Christian @@aut@@ S. Sonny Kim @@aut@@ Lori A. Sutter @@aut@@ Stephan A. Durham @@aut@@ Jidong J. Yang @@aut@@ Charles Gray Vickery @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1015391176 |
id |
DOAJ056057849 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056057849</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412182252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures6050070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056057849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ903486dcea474090ad997920283b732b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Iman Salehi Hikouei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">saltmarsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">halophyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bulk density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redox potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Sonny Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lori A. Sutter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan A. Durham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jidong J. Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Gray Vickery</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">6(2021), 5, p 70</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 70</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures6050070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/903486dcea474090ad997920283b732b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/6/5/70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 70</subfield></datafield></record></collection>
|
author |
Iman Salehi Hikouei |
spellingShingle |
Iman Salehi Hikouei misc saltmarsh misc halophyte misc bulk density misc random forest model misc redox potential misc machine learning misc Technology misc T Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
authorStr |
Iman Salehi Hikouei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1015391176 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24123811 |
topic_title |
Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia saltmarsh halophyte bulk density random forest model redox potential machine learning |
topic |
misc saltmarsh misc halophyte misc bulk density misc random forest model misc redox potential misc machine learning misc Technology misc T |
topic_unstemmed |
misc saltmarsh misc halophyte misc bulk density misc random forest model misc redox potential misc machine learning misc Technology misc T |
topic_browse |
misc saltmarsh misc halophyte misc bulk density misc random forest model misc redox potential misc machine learning misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Infrastructures |
hierarchy_parent_id |
1015391176 |
hierarchy_top_title |
Infrastructures |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1015391176 |
title |
Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
ctrlnum |
(DE-627)DOAJ056057849 (DE-599)DOAJ903486dcea474090ad997920283b732b |
title_full |
Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
author_sort |
Iman Salehi Hikouei |
journal |
Infrastructures |
journalStr |
Infrastructures |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Iman Salehi Hikouei Jason Christian S. Sonny Kim Lori A. Sutter Stephan A. Durham Jidong J. Yang Charles Gray Vickery |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Iman Salehi Hikouei |
doi_str_mv |
10.3390/infrastructures6050070 |
author2-role |
verfasserin |
title_sort |
use of random forest model to identify the relationships among vegetative species, salt marsh soil properties, and interstitial water along the atlantic coast of georgia |
title_auth |
Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
abstract |
Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. |
abstractGer |
Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. |
abstract_unstemmed |
Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
5, p 70 |
title_short |
Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia |
url |
https://doi.org/10.3390/infrastructures6050070 https://doaj.org/article/903486dcea474090ad997920283b732b https://www.mdpi.com/2412-3811/6/5/70 https://doaj.org/toc/2412-3811 |
remote_bool |
true |
author2 |
Jason Christian S. Sonny Kim Lori A. Sutter Stephan A. Durham Jidong J. Yang Charles Gray Vickery |
author2Str |
Jason Christian S. Sonny Kim Lori A. Sutter Stephan A. Durham Jidong J. Yang Charles Gray Vickery |
ppnlink |
1015391176 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/infrastructures6050070 |
up_date |
2024-07-03T18:37:57.473Z |
_version_ |
1803584145961517056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056057849</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412182252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures6050070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056057849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ903486dcea474090ad997920283b732b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Iman Salehi Hikouei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Saltmarshes, known to be ecologically sensitive areas, face disturbances such as vegetation dieback due to anthropogenic activities such as construction. The current construction specifications recommended by state highway agencies do not specifically require documenting or restoring any prior saltmarsh soil/interstitial water properties, nor do they require re-establishing saltmarsh vegetation; restoring the abiotic properties and appropriate vegetation would enhance the long-term functionality and ecology of a disturbed area. In order to have a successful restoration of disturbed saltmarshes with healthy vegetation, the relationship between vegetative species and the properties of saltmarsh soils and interstitial water must be fully understood. In this study, field and laboratory tests were conducted for the soil samples from eight different saltmarsh sites in the Southeastern US Atlantic coastal region, followed by the development of a random forest model; the aim is to identify correlation among saltmarsh predominant vegetation types, redox potential, and salinity. The results reveal that moisture content and sand content are two main drivers for the bulk density of saltmarsh soils, which directly affect plant growth and likely root development. Moreover, it is concluded that deploying modern machine learning algorithms, such as random forest, can help to identify desirable saltmarsh soil/water properties for re-establishing vegetative cover with the reduced time after construction activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">saltmarsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">halophyte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bulk density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redox potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Sonny Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lori A. Sutter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan A. Durham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jidong J. Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Gray Vickery</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">6(2021), 5, p 70</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 70</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures6050070</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/903486dcea474090ad997920283b732b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/6/5/70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 70</subfield></datafield></record></collection>
|
score |
7.3998785 |