Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems
The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D of...
Ausführliche Beschreibung
Autor*in: |
Minjoong Rim [verfasserIn] Chung G. Kang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 8192-8211 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:8192-8211 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3049442 |
---|
Katalog-ID: |
DOAJ056150083 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056150083 | ||
003 | DE-627 | ||
005 | 20230308195557.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3049442 |2 doi | |
035 | |a (DE-627)DOAJ056150083 | ||
035 | |a (DE-599)DOAJ6f73a90c96314059adeae2508777c245 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Minjoong Rim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. | ||
650 | 4 | |a D2D caching | |
650 | 4 | |a wireless caching | |
650 | 4 | |a mobile caching | |
650 | 4 | |a content preference | |
650 | 4 | |a cache partitioning | |
650 | 4 | |a data offloading | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Chung G. Kang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 8192-8211 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:8192-8211 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3049442 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6f73a90c96314059adeae2508777c245 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9314155/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 8192-8211 |
author_variant |
m r mr c g k cgk |
---|---|
matchkey_str |
article:21693536:2021----::ahpriinnadahnsrtgefreieoe |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3049442 doi (DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 DE-627 ger DE-627 rakwb eng TK1-9971 Minjoong Rim verfasserin aut Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering Chung G. Kang verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 8192-8211 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:8192-8211 https://doi.org/10.1109/ACCESS.2021.3049442 kostenfrei https://doaj.org/article/6f73a90c96314059adeae2508777c245 kostenfrei https://ieeexplore.ieee.org/document/9314155/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 8192-8211 |
spelling |
10.1109/ACCESS.2021.3049442 doi (DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 DE-627 ger DE-627 rakwb eng TK1-9971 Minjoong Rim verfasserin aut Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering Chung G. Kang verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 8192-8211 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:8192-8211 https://doi.org/10.1109/ACCESS.2021.3049442 kostenfrei https://doaj.org/article/6f73a90c96314059adeae2508777c245 kostenfrei https://ieeexplore.ieee.org/document/9314155/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 8192-8211 |
allfields_unstemmed |
10.1109/ACCESS.2021.3049442 doi (DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 DE-627 ger DE-627 rakwb eng TK1-9971 Minjoong Rim verfasserin aut Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering Chung G. Kang verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 8192-8211 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:8192-8211 https://doi.org/10.1109/ACCESS.2021.3049442 kostenfrei https://doaj.org/article/6f73a90c96314059adeae2508777c245 kostenfrei https://ieeexplore.ieee.org/document/9314155/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 8192-8211 |
allfieldsGer |
10.1109/ACCESS.2021.3049442 doi (DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 DE-627 ger DE-627 rakwb eng TK1-9971 Minjoong Rim verfasserin aut Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering Chung G. Kang verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 8192-8211 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:8192-8211 https://doi.org/10.1109/ACCESS.2021.3049442 kostenfrei https://doaj.org/article/6f73a90c96314059adeae2508777c245 kostenfrei https://ieeexplore.ieee.org/document/9314155/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 8192-8211 |
allfieldsSound |
10.1109/ACCESS.2021.3049442 doi (DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 DE-627 ger DE-627 rakwb eng TK1-9971 Minjoong Rim verfasserin aut Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering Chung G. Kang verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 8192-8211 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:8192-8211 https://doi.org/10.1109/ACCESS.2021.3049442 kostenfrei https://doaj.org/article/6f73a90c96314059adeae2508777c245 kostenfrei https://ieeexplore.ieee.org/document/9314155/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 8192-8211 |
language |
English |
source |
In IEEE Access 9(2021), Seite 8192-8211 volume:9 year:2021 pages:8192-8211 |
sourceStr |
In IEEE Access 9(2021), Seite 8192-8211 volume:9 year:2021 pages:8192-8211 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
D2D caching wireless caching mobile caching content preference cache partitioning data offloading Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Minjoong Rim @@aut@@ Chung G. Kang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056150083 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056150083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308195557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3049442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056150083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6f73a90c96314059adeae2508777c245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minjoong Rim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content preference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cache partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data offloading</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chung G. Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 8192-8211</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:8192-8211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3049442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6f73a90c96314059adeae2508777c245</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9314155/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">8192-8211</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Minjoong Rim |
spellingShingle |
Minjoong Rim misc TK1-9971 misc D2D caching misc wireless caching misc mobile caching misc content preference misc cache partitioning misc data offloading misc Electrical engineering. Electronics. Nuclear engineering Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
authorStr |
Minjoong Rim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems D2D caching wireless caching mobile caching content preference cache partitioning data offloading |
topic |
misc TK1-9971 misc D2D caching misc wireless caching misc mobile caching misc content preference misc cache partitioning misc data offloading misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc D2D caching misc wireless caching misc mobile caching misc content preference misc cache partitioning misc data offloading misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc D2D caching misc wireless caching misc mobile caching misc content preference misc cache partitioning misc data offloading misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
ctrlnum |
(DE-627)DOAJ056150083 (DE-599)DOAJ6f73a90c96314059adeae2508777c245 |
title_full |
Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
author_sort |
Minjoong Rim |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
8192 |
author_browse |
Minjoong Rim Chung G. Kang |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Minjoong Rim |
doi_str_mv |
10.1109/ACCESS.2021.3049442 |
author2-role |
verfasserin |
title_sort |
cache partitioning and caching strategies for device-to-device caching systems |
callnumber |
TK1-9971 |
title_auth |
Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
abstract |
The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. |
abstractGer |
The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. |
abstract_unstemmed |
The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems |
url |
https://doi.org/10.1109/ACCESS.2021.3049442 https://doaj.org/article/6f73a90c96314059adeae2508777c245 https://ieeexplore.ieee.org/document/9314155/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Chung G. Kang |
author2Str |
Chung G. Kang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3049442 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:09:48.207Z |
_version_ |
1803586149509234688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056150083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308195557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3049442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056150083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6f73a90c96314059adeae2508777c245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minjoong Rim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cache Partitioning and Caching Strategies for Device-to-Device Caching Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The amount of traffic in wireless networks is increasing exponentially, and this problem can be mitigated using device-to-device (D2D) caching technology, which installs a cache on a mobile end device. Devices can reduce the cell load through self-offloading via content in their own cache and D2D offloading using content in others' caches. However, especially in the early stage of D2D caching systems, a limited number of devices with a small storage might be used, and it is required to develop a caching scheme with excellent performance despite the small cache size. Regarding content popularity, which is common to most users, the preference probability values are not concentrated on some pieces of content, making it difficult to achieve satisfactory performance using a small cache. On the other hand, when considering individual users, content preferences may contain large values for specific content based on individual characteristics. In addition, the performance can be improved by considering short-term content preferences that reflect changes in content preferences over time or newly created content during peak hours. In this article, the hit ratio is divided into six parts considering self- and D2D offloading, common and individual user preferences, and little and large temporal changes in content preferences during peak hours. We also conceptually divide the cache of a helper into six areas in relation to the six parts of the hit ratio, and discuss cache partitioning and proactive caching strategies according to the environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile caching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content preference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cache partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data offloading</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chung G. Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 8192-8211</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:8192-8211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3049442</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6f73a90c96314059adeae2508777c245</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9314155/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">8192-8211</subfield></datafield></record></collection>
|
score |
7.4013042 |