Monitoring and evaluation of building ventilation system fans operation using performance curves
Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present wo...
Ausführliche Beschreibung
Autor*in: |
Mahendra Singh [verfasserIn] Muhyiddine Jradi [verfasserIn] Hamid Reza Shaker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy and Built Environment - KeAi Communications Co., Ltd., 2020, 1(2020), 3, Seite 307-318 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2020 ; number:3 ; pages:307-318 |
Links: |
---|
DOI / URN: |
10.1016/j.enbenv.2020.04.001 |
---|
Katalog-ID: |
DOAJ056205171 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056205171 | ||
003 | DE-627 | ||
005 | 20230308195901.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enbenv.2020.04.001 |2 doi | |
035 | |a (DE-627)DOAJ056205171 | ||
035 | |a (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
050 | 0 | |a TH1-9745 | |
100 | 0 | |a Mahendra Singh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monitoring and evaluation of building ventilation system fans operation using performance curves |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. | ||
650 | 4 | |a Buildings | |
650 | 4 | |a Ventilation system | |
650 | 4 | |a Fan unit | |
650 | 4 | |a Performance curve | |
650 | 4 | |a Modeling | |
650 | 4 | |a Fan efficiency | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
653 | 0 | |a Building construction | |
700 | 0 | |a Muhyiddine Jradi |e verfasserin |4 aut | |
700 | 0 | |a Hamid Reza Shaker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy and Built Environment |d KeAi Communications Co., Ltd., 2020 |g 1(2020), 3, Seite 307-318 |w (DE-627)1689666412 |w (DE-600)3007897-0 |x 26661233 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2020 |g number:3 |g pages:307-318 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.enbenv.2020.04.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2666123320300271 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2666-1233 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2020 |e 3 |h 307-318 |
author_variant |
m s ms m j mj h r s hrs |
---|---|
matchkey_str |
article:26661233:2020----::oioigneautoobidnvniainytmasprto |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TD |
publishDate |
2020 |
allfields |
10.1016/j.enbenv.2020.04.001 doi (DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 DE-627 ger DE-627 rakwb eng TD1-1066 TH1-9745 Mahendra Singh verfasserin aut Monitoring and evaluation of building ventilation system fans operation using performance curves 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction Muhyiddine Jradi verfasserin aut Hamid Reza Shaker verfasserin aut In Energy and Built Environment KeAi Communications Co., Ltd., 2020 1(2020), 3, Seite 307-318 (DE-627)1689666412 (DE-600)3007897-0 26661233 nnns volume:1 year:2020 number:3 pages:307-318 https://doi.org/10.1016/j.enbenv.2020.04.001 kostenfrei https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 kostenfrei http://www.sciencedirect.com/science/article/pii/S2666123320300271 kostenfrei https://doaj.org/toc/2666-1233 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 1 2020 3 307-318 |
spelling |
10.1016/j.enbenv.2020.04.001 doi (DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 DE-627 ger DE-627 rakwb eng TD1-1066 TH1-9745 Mahendra Singh verfasserin aut Monitoring and evaluation of building ventilation system fans operation using performance curves 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction Muhyiddine Jradi verfasserin aut Hamid Reza Shaker verfasserin aut In Energy and Built Environment KeAi Communications Co., Ltd., 2020 1(2020), 3, Seite 307-318 (DE-627)1689666412 (DE-600)3007897-0 26661233 nnns volume:1 year:2020 number:3 pages:307-318 https://doi.org/10.1016/j.enbenv.2020.04.001 kostenfrei https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 kostenfrei http://www.sciencedirect.com/science/article/pii/S2666123320300271 kostenfrei https://doaj.org/toc/2666-1233 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 1 2020 3 307-318 |
allfields_unstemmed |
10.1016/j.enbenv.2020.04.001 doi (DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 DE-627 ger DE-627 rakwb eng TD1-1066 TH1-9745 Mahendra Singh verfasserin aut Monitoring and evaluation of building ventilation system fans operation using performance curves 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction Muhyiddine Jradi verfasserin aut Hamid Reza Shaker verfasserin aut In Energy and Built Environment KeAi Communications Co., Ltd., 2020 1(2020), 3, Seite 307-318 (DE-627)1689666412 (DE-600)3007897-0 26661233 nnns volume:1 year:2020 number:3 pages:307-318 https://doi.org/10.1016/j.enbenv.2020.04.001 kostenfrei https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 kostenfrei http://www.sciencedirect.com/science/article/pii/S2666123320300271 kostenfrei https://doaj.org/toc/2666-1233 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 1 2020 3 307-318 |
allfieldsGer |
10.1016/j.enbenv.2020.04.001 doi (DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 DE-627 ger DE-627 rakwb eng TD1-1066 TH1-9745 Mahendra Singh verfasserin aut Monitoring and evaluation of building ventilation system fans operation using performance curves 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction Muhyiddine Jradi verfasserin aut Hamid Reza Shaker verfasserin aut In Energy and Built Environment KeAi Communications Co., Ltd., 2020 1(2020), 3, Seite 307-318 (DE-627)1689666412 (DE-600)3007897-0 26661233 nnns volume:1 year:2020 number:3 pages:307-318 https://doi.org/10.1016/j.enbenv.2020.04.001 kostenfrei https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 kostenfrei http://www.sciencedirect.com/science/article/pii/S2666123320300271 kostenfrei https://doaj.org/toc/2666-1233 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 1 2020 3 307-318 |
allfieldsSound |
10.1016/j.enbenv.2020.04.001 doi (DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 DE-627 ger DE-627 rakwb eng TD1-1066 TH1-9745 Mahendra Singh verfasserin aut Monitoring and evaluation of building ventilation system fans operation using performance curves 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction Muhyiddine Jradi verfasserin aut Hamid Reza Shaker verfasserin aut In Energy and Built Environment KeAi Communications Co., Ltd., 2020 1(2020), 3, Seite 307-318 (DE-627)1689666412 (DE-600)3007897-0 26661233 nnns volume:1 year:2020 number:3 pages:307-318 https://doi.org/10.1016/j.enbenv.2020.04.001 kostenfrei https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 kostenfrei http://www.sciencedirect.com/science/article/pii/S2666123320300271 kostenfrei https://doaj.org/toc/2666-1233 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 1 2020 3 307-318 |
language |
English |
source |
In Energy and Built Environment 1(2020), 3, Seite 307-318 volume:1 year:2020 number:3 pages:307-318 |
sourceStr |
In Energy and Built Environment 1(2020), 3, Seite 307-318 volume:1 year:2020 number:3 pages:307-318 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency Environmental technology. Sanitary engineering Building construction |
isfreeaccess_bool |
true |
container_title |
Energy and Built Environment |
authorswithroles_txt_mv |
Mahendra Singh @@aut@@ Muhyiddine Jradi @@aut@@ Hamid Reza Shaker @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1689666412 |
id |
DOAJ056205171 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056205171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308195901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enbenv.2020.04.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056205171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJccccadb724ea440d846e09280c45e2e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mahendra Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring and evaluation of building ventilation system fans operation using performance curves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ventilation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fan unit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fan efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhyiddine Jradi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hamid Reza Shaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy and Built Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">1(2020), 3, Seite 307-318</subfield><subfield code="w">(DE-627)1689666412</subfield><subfield code="w">(DE-600)3007897-0</subfield><subfield code="x">26661233</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:307-318</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enbenv.2020.04.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2666123320300271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-1233</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">307-318</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mahendra Singh |
spellingShingle |
Mahendra Singh misc TD1-1066 misc TH1-9745 misc Buildings misc Ventilation system misc Fan unit misc Performance curve misc Modeling misc Fan efficiency misc Environmental technology. Sanitary engineering misc Building construction Monitoring and evaluation of building ventilation system fans operation using performance curves |
authorStr |
Mahendra Singh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1689666412 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
26661233 |
topic_title |
TD1-1066 TH1-9745 Monitoring and evaluation of building ventilation system fans operation using performance curves Buildings Ventilation system Fan unit Performance curve Modeling Fan efficiency |
topic |
misc TD1-1066 misc TH1-9745 misc Buildings misc Ventilation system misc Fan unit misc Performance curve misc Modeling misc Fan efficiency misc Environmental technology. Sanitary engineering misc Building construction |
topic_unstemmed |
misc TD1-1066 misc TH1-9745 misc Buildings misc Ventilation system misc Fan unit misc Performance curve misc Modeling misc Fan efficiency misc Environmental technology. Sanitary engineering misc Building construction |
topic_browse |
misc TD1-1066 misc TH1-9745 misc Buildings misc Ventilation system misc Fan unit misc Performance curve misc Modeling misc Fan efficiency misc Environmental technology. Sanitary engineering misc Building construction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy and Built Environment |
hierarchy_parent_id |
1689666412 |
hierarchy_top_title |
Energy and Built Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1689666412 (DE-600)3007897-0 |
title |
Monitoring and evaluation of building ventilation system fans operation using performance curves |
ctrlnum |
(DE-627)DOAJ056205171 (DE-599)DOAJccccadb724ea440d846e09280c45e2e1 |
title_full |
Monitoring and evaluation of building ventilation system fans operation using performance curves |
author_sort |
Mahendra Singh |
journal |
Energy and Built Environment |
journalStr |
Energy and Built Environment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
307 |
author_browse |
Mahendra Singh Muhyiddine Jradi Hamid Reza Shaker |
container_volume |
1 |
class |
TD1-1066 TH1-9745 |
format_se |
Elektronische Aufsätze |
author-letter |
Mahendra Singh |
doi_str_mv |
10.1016/j.enbenv.2020.04.001 |
author2-role |
verfasserin |
title_sort |
monitoring and evaluation of building ventilation system fans operation using performance curves |
callnumber |
TD1-1066 |
title_auth |
Monitoring and evaluation of building ventilation system fans operation using performance curves |
abstract |
Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. |
abstractGer |
Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. |
abstract_unstemmed |
Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Monitoring and evaluation of building ventilation system fans operation using performance curves |
url |
https://doi.org/10.1016/j.enbenv.2020.04.001 https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1 http://www.sciencedirect.com/science/article/pii/S2666123320300271 https://doaj.org/toc/2666-1233 |
remote_bool |
true |
author2 |
Muhyiddine Jradi Hamid Reza Shaker |
author2Str |
Muhyiddine Jradi Hamid Reza Shaker |
ppnlink |
1689666412 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enbenv.2020.04.001 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T19:29:26.936Z |
_version_ |
1803587385504563201 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056205171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308195901.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enbenv.2020.04.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056205171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJccccadb724ea440d846e09280c45e2e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mahendra Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring and evaluation of building ventilation system fans operation using performance curves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ventilation fans are an important component of any mechanically ventilated building. Poor fan performance could significantly affect the whole building performance metrics. There are several issues such as dirty blades, mechanical wear, aging of fans could impact the fan’s performance. In present work, a novel, indirect and data-driven methodology is introduced to monitor the ventilation fan unit performance. The proposed method is able to perform continuous monitoring of ventilation fan unit in real-time. The real-time performance of 3 Air handling unit (AHU) fans is examined in an academic building. Expected fan performance is modeled with the help of manufacturer data and compared against the real-time performance. Two data-driven models are developed and implemented. The first model is used to compute expected total fan pressure at a given airflow rate while second is a Support Vector Regression (SVR) model, to predict the fan efficiency. The performance monitoring of the ventilation fan unit is determined in terms of expected and actual fan energy consumption. Findings indicated a significant performance gap in three ventilation fan unit in a case building known as OU44, located in city Odense, Denmark. The advantage of this method comprises simplicity, no direct human intervention and scalability to the series of ventilation units.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ventilation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fan unit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fan efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhyiddine Jradi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hamid Reza Shaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy and Built Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">1(2020), 3, Seite 307-318</subfield><subfield code="w">(DE-627)1689666412</subfield><subfield code="w">(DE-600)3007897-0</subfield><subfield code="x">26661233</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:307-318</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enbenv.2020.04.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ccccadb724ea440d846e09280c45e2e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2666123320300271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-1233</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">307-318</subfield></datafield></record></collection>
|
score |
7.402793 |